1

Refactoring

This commit is contained in:
2025-11-19 22:46:04 +01:00
parent 6a78dbb50d
commit 3a1f7e2a7e
10 changed files with 240 additions and 120 deletions

View File

@@ -4,8 +4,6 @@ from __future__ import annotations
from pathlib import Path
import sys
import calendar
import numpy as np
import pandas as pd
PROJECT_ROOT = Path(__file__).resolve().parents[3]
@@ -13,43 +11,68 @@ if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from meteo.dataset import load_raw_csv
from meteo.analysis import compute_daily_rainfall_totals
from meteo.plots import export_plot_dataset, plot_calendar_heatmap, plot_weekday_profiles
from meteo.variables import VARIABLES_BY_KEY
from meteo.plots import (
CalendarHeatmapSpec,
daily_mean_series,
generate_calendar_heatmaps,
rainfall_daily_total_series,
)
DOC_DIR = Path(__file__).resolve().parent.parent
CSV_PATH = PROJECT_ROOT / "data" / "weather_minutely.csv"
OUTPUT_DIR = DOC_DIR / "figures" / "calendar"
WEEKDAY_VARIABLE_KEYS = ["temperature", "humidity", "wind_speed", "illuminance"]
def _format_calendar_matrix(series: pd.Series, year: int, agg_label: str) -> pd.DataFrame:
"""
Transforme une série quotidienne en matrice mois x jours (1-31).
"""
start = pd.Timestamp(year=year, month=1, day=1, tz=series.index.tz)
end = pd.Timestamp(year=year, month=12, day=31, tz=series.index.tz)
filtered = series.loc[(series.index >= start) & (series.index <= end)]
matrix = pd.DataFrame(
np.nan,
index=[calendar.month_name[m][:3] for m in range(1, 13)],
columns=list(range(1, 32)),
)
for timestamp, value in filtered.items():
month = timestamp.month
day = timestamp.day
matrix.at[calendar.month_name[month][:3], day] = value
matrix.index.name = f"{agg_label} ({year})"
return matrix
def compute_daily_mean(df: pd.DataFrame, column: str) -> pd.Series:
return df[column].resample("1D").mean()
HEATMAP_SPECS: tuple[CalendarHeatmapSpec, ...] = (
CalendarHeatmapSpec(
key="rain",
agg_label="Pluie (mm)",
title_template="Pluie quotidienne - {year}",
cmap="Blues",
colorbar_label="mm",
aggregator=rainfall_daily_total_series,
),
CalendarHeatmapSpec(
key="temperature",
agg_label="Température (°C)",
title_template="Température moyenne quotidienne - {year}",
cmap="coolwarm",
colorbar_label="°C",
aggregator=daily_mean_series("temperature"),
),
CalendarHeatmapSpec(
key="humidity",
agg_label="Humidité relative (%)",
title_template="Humidité relative quotidienne - {year}",
cmap="PuBu",
colorbar_label="%",
aggregator=daily_mean_series("humidity"),
),
CalendarHeatmapSpec(
key="pressure",
agg_label="Pression (hPa)",
title_template="Pression moyenne quotidienne - {year}",
cmap="Greens",
colorbar_label="hPa",
aggregator=daily_mean_series("pressure"),
),
CalendarHeatmapSpec(
key="illuminance",
agg_label="Illuminance (lux)",
title_template="Illuminance moyenne quotidienne - {year}",
cmap="YlOrBr",
colorbar_label="lux",
aggregator=daily_mean_series("illuminance"),
),
CalendarHeatmapSpec(
key="wind",
agg_label="Vent (km/h)",
title_template="Vitesse moyenne du vent - {year}",
cmap="Purples",
colorbar_label="km/h",
aggregator=daily_mean_series("wind_speed"),
),
)
def main() -> None:
@@ -76,91 +99,20 @@ def main() -> None:
latest_year = df.index.year.max()
print(f"Année retenue pour le calendrier : {latest_year}")
daily_totals = compute_daily_rainfall_totals(df=df)
daily_rain = daily_totals["daily_total"]
rain_matrix = _format_calendar_matrix(daily_rain, latest_year, "Pluie (mm)")
rain_matrix.attrs["cmap"] = "Blues"
rain_matrix.attrs["colorbar_label"] = "mm"
rain_path = OUTPUT_DIR / f"calendar_rain_{latest_year}.png"
plot_calendar_heatmap(
matrix=rain_matrix,
output_path=rain_path,
title=f"Pluie quotidienne - {latest_year}",
cmap="Blues",
colorbar_label="mm",
results = generate_calendar_heatmaps(
df=df,
specs=HEATMAP_SPECS,
year=latest_year,
output_dir=OUTPUT_DIR,
)
print(f"✔ Heatmap pluie {latest_year} : {rain_path}")
daily_temp = compute_daily_mean(df, "temperature")
temp_matrix = _format_calendar_matrix(daily_temp, latest_year, "Température (°C)")
temp_matrix.attrs["cmap"] = "coolwarm"
temp_matrix.attrs["colorbar_label"] = "°C"
temp_path = OUTPUT_DIR / f"calendar_temperature_{latest_year}.png"
plot_calendar_heatmap(
matrix=temp_matrix,
output_path=temp_path,
title=f"Température moyenne quotidienne - {latest_year}",
cmap="coolwarm",
colorbar_label="°C",
)
print(f"✔ Heatmap température {latest_year} : {temp_path}")
if "pressure" in df.columns:
daily_pressure = compute_daily_mean(df, "pressure")
pressure_matrix = _format_calendar_matrix(daily_pressure, latest_year, "Pression (hPa)")
pressure_matrix.attrs["cmap"] = "Greens"
pressure_matrix.attrs["colorbar_label"] = "hPa"
pressure_path = OUTPUT_DIR / f"calendar_pressure_{latest_year}.png"
plot_calendar_heatmap(
matrix=pressure_matrix,
output_path=pressure_path,
title=f"Pression moyenne quotidienne - {latest_year}",
cmap="Greens",
colorbar_label="hPa",
)
print(f"✔ Heatmap pression {latest_year} : {pressure_path}")
if "illuminance" in df.columns:
daily_lux = compute_daily_mean(df, "illuminance")
lux_matrix = _format_calendar_matrix(daily_lux, latest_year, "Illuminance (lux)")
lux_matrix.attrs["cmap"] = "YlOrBr"
lux_matrix.attrs["colorbar_label"] = "lux"
lux_path = OUTPUT_DIR / f"calendar_illuminance_{latest_year}.png"
plot_calendar_heatmap(
matrix=lux_matrix,
output_path=lux_path,
title=f"Illuminance moyenne quotidienne - {latest_year}",
cmap="YlOrBr",
colorbar_label="lux",
)
print(f"✔ Heatmap illuminance {latest_year} : {lux_path}")
if "wind_speed" in df.columns:
daily_wind = compute_daily_mean(df, "wind_speed")
wind_matrix = _format_calendar_matrix(daily_wind, latest_year, "Vent (km/h)")
wind_matrix.attrs["cmap"] = "Purples"
wind_matrix.attrs["colorbar_label"] = "km/h"
wind_path = OUTPUT_DIR / f"calendar_wind_{latest_year}.png"
plot_calendar_heatmap(
matrix=wind_matrix,
output_path=wind_path,
title=f"Vitesse moyenne du vent - {latest_year}",
cmap="Purples",
colorbar_label="km/h",
)
print(f"✔ Heatmap vent {latest_year} : {wind_path}")
hourly = df[WEEKDAY_VARIABLE_KEYS].resample("1h").mean()
weekday_stats = hourly.groupby(hourly.index.dayofweek).mean()
weekday_path = OUTPUT_DIR / "weekday_profiles.png"
variables = [VARIABLES_BY_KEY[key] for key in WEEKDAY_VARIABLE_KEYS]
plot_weekday_profiles(
weekday_df=weekday_stats,
variables=variables,
output_path=weekday_path,
title="Profils moyens par jour de semaine",
)
print(f"✔ Profils hebdomadaires : {weekday_path}")
for result in results:
title = result.spec.title_template.format(year=latest_year)
if result.output_path:
print(f"{title} : {result.output_path}")
else:
reason = f" ({result.reason})" if result.reason else ""
print(f"⚠ Heatmap ignorée pour {result.spec.key}{reason}.")
print("✔ Graphiques calendrier générés.")