1

Réorganisation

This commit is contained in:
2025-11-19 17:01:45 +01:00
parent 566d4400ce
commit 617b12c02e
91 changed files with 874 additions and 1715 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 256 KiB

View File

@@ -0,0 +1,29 @@
# Corrélations binaires avancées
## Corrélations décalées
```shell
python "docs/05 - Corrélations binaires avancées/scripts/plot_lagged_correlations.py"
```
![](figures/lagged_correlations/lagcorr_humidity_to_rain_rate.png)
![](figures/lagged_correlations/lagcorr_illuminance_to_temperature.png)
![](figures/lagged_correlations/lagcorr_pressure_to_illuminance.png)
![](figures/lagged_correlations/lagcorr_pressure_to_rain_rate.png)
![](figures/lagged_correlations/lagcorr_pressure_to_wind_speed.png)
![](figures/lagged_correlations/lagcorr_temperature_to_humidity.png)
![](figures/lagged_correlations/lagcorr_temperature_to_rain_rate.png)
## Corrélations glissantes
```shell
python "docs/05 - Corrélations binaires avancées/scripts/plot_rolling_correlation_heatmap.py"
```
![](figures/rolling_correlations/rolling_correlation_heatmap.png)

View File

@@ -0,0 +1,64 @@
# scripts/plot_lagged_correlations.py
from __future__ import annotations
from pathlib import Path
import sys
PROJECT_ROOT = Path(__file__).resolve().parents[3]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from meteo.dataset import load_raw_csv
from meteo.variables import VARIABLES_BY_KEY
from meteo.analysis import compute_lagged_correlation
from meteo.plots import plot_lagged_correlation
from meteo.correlation_presets import DEFAULT_LAGGED_PAIRS
CSV_PATH = Path("data/weather_minutely.csv")
DOC_DIR = Path(__file__).resolve().parent.parent
OUTPUT_DIR = DOC_DIR / "figures" / "lagged_correlations"
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
for key_x, key_y in DEFAULT_LAGGED_PAIRS:
var_x = VARIABLES_BY_KEY[key_x]
var_y = VARIABLES_BY_KEY[key_y]
print(f"→ Corrélation décalée : {var_x.key}{var_y.key}")
lag_df = compute_lagged_correlation(
df=df,
var_x=var_x,
var_y=var_y,
max_lag_minutes=360, # ± 6 heures
step_minutes=10, # pas de 10 minutes
method="pearson",
)
filename = f"lagcorr_{var_x.key}_to_{var_y.key}.png"
output_path = OUTPUT_DIR / filename
plot_lagged_correlation(
lag_df=lag_df,
var_x=var_x,
var_y=var_y,
output_path=output_path,
)
print("✔ Graphiques de corrélation décalée générés.")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,65 @@
# scripts/plot_rolling_correlation_heatmap.py
from __future__ import annotations
from pathlib import Path
import sys
PROJECT_ROOT = Path(__file__).resolve().parents[3]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from meteo.dataset import load_raw_csv
from meteo.variables import VARIABLES_BY_KEY
from meteo.analysis import compute_rolling_correlations_for_pairs
from meteo.plots import plot_rolling_correlation_heatmap
from meteo.correlation_presets import DEFAULT_ROLLING_PAIRS
CSV_PATH = Path("data/weather_minutely.csv")
DOC_DIR = Path(__file__).resolve().parent.parent
OUTPUT_PATH = DOC_DIR / "figures" / "rolling_correlations" / "rolling_correlation_heatmap.png"
WINDOW_MINUTES = 180 # 3 heures pour observer les tendances synoptiques
STEP_MINUTES = 30 # on n'échantillonne qu'un point sur 30 minutes
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
pairs = [(VARIABLES_BY_KEY[a], VARIABLES_BY_KEY[b]) for a, b in DEFAULT_ROLLING_PAIRS]
rolling_df = compute_rolling_correlations_for_pairs(
df=df,
pairs=pairs,
window_minutes=WINDOW_MINUTES,
min_valid_fraction=0.7,
step_minutes=STEP_MINUTES,
method="pearson",
)
if rolling_df.empty:
print("⚠ Impossible de calculer les corrélations glissantes (données insuffisantes).")
return
output_path = plot_rolling_correlation_heatmap(
rolling_corr=rolling_df,
output_path=OUTPUT_PATH,
cmap="coolwarm",
vmin=-1.0,
vmax=1.0,
)
print(f"✔ Heatmap de corrélations glissantes enregistrée : {output_path}")
if __name__ == "__main__":
main()