1

Ajout des vues calendrier à l'étape 3

This commit is contained in:
Richard Dern 2025-11-19 22:35:03 +01:00
parent 79603b7c3e
commit 6a78dbb50d
8 changed files with 36 additions and 57 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

View File

@ -4,6 +4,8 @@ On peut désormais tracer nos premiers graphiques simples et bruts.
S'ils ne sont pas très instructifs par rapport à ce que nous fournissent Home Assistant et InfluxDB, ils nous permettent au moins de nous assurer que tout fonctionne, et que les données semblent cohérentes.
Les fichiers CSV correspondant à chaque figure sont conservés dans `data/` dans ce dossier.
On se limite dans un premier temps aux 7 derniers jours.
```shell
python "docs/03 - Premiers graphiques/scripts/plot_basic_variables.py"
```
@ -23,3 +25,24 @@ python "docs/03 - Premiers graphiques/scripts/plot_basic_variables.py"
![](figures/wind_direction_last_7_days.png)
![](figures/sun_elevation_last_7_days.png)
## Vues calendrier
Les vues calendrier permettent de visualiser, jour par jour, les cumuls ou moyennes quotidiennes sur la dernière année complète disponible.
Les images générées sont stockées dans `figures/calendar/` et les CSV correspondants dans `data/calendar/`.
```shell
python "docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py"
```
![](figures/calendar/calendar_rain_2025.png)
![](figures/calendar/calendar_temperature_2025.png)
![](figures/calendar/calendar_pressure_2025.png)
![](figures/calendar/calendar_illuminance_2025.png)
![](figures/calendar/calendar_wind_2025.png)
Ces vues, bien que simples en principe, mettent déjà mieux en évidence les fluctuations au cours du temps.

View File

@ -1,12 +1,16 @@
# scripts/plot_calendar_overview.py
# docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py
from __future__ import annotations
from pathlib import Path
import sys
import calendar
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
PROJECT_ROOT = Path(__file__).resolve().parents[3]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from meteo.dataset import load_raw_csv
from meteo.analysis import compute_daily_rainfall_totals
@ -14,8 +18,9 @@ from meteo.plots import export_plot_dataset, plot_calendar_heatmap, plot_weekday
from meteo.variables import VARIABLES_BY_KEY
CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/calendar")
DOC_DIR = Path(__file__).resolve().parent.parent
CSV_PATH = PROJECT_ROOT / "data" / "weather_minutely.csv"
OUTPUT_DIR = DOC_DIR / "figures" / "calendar"
WEEKDAY_VARIABLE_KEYS = ["temperature", "humidity", "wind_speed", "illuminance"]
@ -47,42 +52,6 @@ def compute_daily_mean(df: pd.DataFrame, column: str) -> pd.Series:
return df[column].resample("1D").mean()
def plot_combined_calendar(
matrices: dict[str, pd.DataFrame],
output_path: Path,
*,
title: str,
) -> None:
if not matrices:
return
combined_dataset = pd.concat(matrices, axis=1)
export_plot_dataset(combined_dataset, output_path)
n = len(matrices)
fig, axes = plt.subplots(n, 1, figsize=(14, 4 * n), sharex=True)
if n == 1:
axes = [axes]
for ax, (label, matrix) in zip(axes, matrices.items()):
data = matrix.to_numpy(dtype=float)
im = ax.imshow(data, aspect="auto", interpolation="nearest", cmap=matrix.attrs.get("cmap", "viridis"))
ax.set_xticks(np.arange(matrix.shape[1]))
ax.set_xticklabels(matrix.columns, rotation=90)
ax.set_yticks(np.arange(matrix.shape[0]))
ax.set_yticklabels(matrix.index)
ax.set_ylabel(label)
cbar = fig.colorbar(im, ax=ax)
if matrix.attrs.get("colorbar_label"):
cbar.set_label(matrix.attrs["colorbar_label"])
axes[-1].set_xlabel("Jour du mois")
fig.suptitle(title)
fig.tight_layout(rect=[0, 0, 1, 0.97])
fig.savefig(output_path, dpi=150)
plt.close(fig)
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
@ -136,11 +105,6 @@ def main() -> None:
)
print(f"✔ Heatmap température {latest_year} : {temp_path}")
matrices_for_combined = {
"Pluie (mm)": rain_matrix,
"Température (°C)": temp_matrix,
}
if "pressure" in df.columns:
daily_pressure = compute_daily_mean(df, "pressure")
pressure_matrix = _format_calendar_matrix(daily_pressure, latest_year, "Pression (hPa)")
@ -155,7 +119,6 @@ def main() -> None:
colorbar_label="hPa",
)
print(f"✔ Heatmap pression {latest_year} : {pressure_path}")
matrices_for_combined["Pression (hPa)"] = pressure_matrix
if "illuminance" in df.columns:
daily_lux = compute_daily_mean(df, "illuminance")
@ -171,7 +134,6 @@ def main() -> None:
colorbar_label="lux",
)
print(f"✔ Heatmap illuminance {latest_year} : {lux_path}")
matrices_for_combined["Illuminance (lux)"] = lux_matrix
if "wind_speed" in df.columns:
daily_wind = compute_daily_mean(df, "wind_speed")
@ -187,15 +149,6 @@ def main() -> None:
colorbar_label="km/h",
)
print(f"✔ Heatmap vent {latest_year} : {wind_path}")
matrices_for_combined["Vent (km/h)"] = wind_matrix
combined_path = OUTPUT_DIR / f"calendar_combined_{latest_year}.png"
plot_combined_calendar(
matrices=matrices_for_combined,
output_path=combined_path,
title=f"Calendrier combiné {latest_year}",
)
print(f"✔ Calendrier combiné : {combined_path}")
hourly = df[WEEKDAY_VARIABLE_KEYS].resample("1h").mean()
weekday_stats = hourly.groupby(hourly.index.dayofweek).mean()

View File

@ -29,7 +29,10 @@ PLOT_SCRIPTS: tuple[PlotScript, ...] = (
"plot_basic_variables",
PROJECT_ROOT / "docs" / "03 - Premiers graphiques" / "scripts" / "plot_basic_variables.py",
),
PlotScript("plot_calendar_overview", PROJECT_ROOT / "scripts" / "plot_calendar_overview.py"),
PlotScript(
"plot_calendar_overview",
PROJECT_ROOT / "docs" / "03 - Premiers graphiques" / "scripts" / "plot_calendar_overview.py",
),
PlotScript(
"plot_all_pairwise_scatter",
PROJECT_ROOT / "docs" / "04 - Corrélations binaires" / "scripts" / "plot_all_pairwise_scatter.py",