1

Visualisations étendues (illuminance, calendriers, vent)

This commit is contained in:
Richard Dern 2025-11-17 22:50:27 +01:00
parent 45b6beac98
commit 70c9d31eb9
25 changed files with 917 additions and 3 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 189 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 269 KiB

After

Width:  |  Height:  |  Size: 342 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

View File

@ -10,6 +10,8 @@ import pandas as pd
from .variables import Variable from .variables import Variable
from .season import SEASON_LABELS from .season import SEASON_LABELS
MONTH_ORDER = list(range(1, 13))
def compute_correlation_matrix( def compute_correlation_matrix(
df: pd.DataFrame, df: pd.DataFrame,
@ -599,3 +601,145 @@ def compute_rainfall_by_season(
order = [season for season in SEASON_LABELS if season in agg.index] order = [season for season in SEASON_LABELS if season in agg.index]
agg = agg.loc[order] agg = agg.loc[order]
return agg return agg
def filter_by_condition(
df: pd.DataFrame,
*,
condition: pd.Series,
) -> pd.DataFrame:
"""
Renvoie une copie filtrée du DataFrame selon une condition booleenne alignée.
"""
mask = condition.reindex(df.index)
mask = mask.fillna(False)
return df.loc[mask]
def compute_monthly_climatology(
df: pd.DataFrame,
*,
columns: Sequence[str],
) -> pd.DataFrame:
"""
Moyenne par mois (112) pour les colonnes fournies.
"""
_ensure_datetime_index(df)
missing = [col for col in columns if col not in df.columns]
if missing:
raise KeyError(f"Colonnes absentes : {missing}")
grouped = df[list(columns)].groupby(df.index.month).mean()
grouped = grouped.reindex(MONTH_ORDER)
grouped.index.name = "month"
return grouped
def compute_monthly_means(
df: pd.DataFrame,
*,
columns: Sequence[str],
) -> pd.DataFrame:
"""
Moyennes calendaire par mois (indexé sur la fin de mois).
"""
_ensure_datetime_index(df)
missing = [col for col in columns if col not in df.columns]
if missing:
raise KeyError(f"Colonnes absentes : {missing}")
monthly = df[list(columns)].resample("1ME").mean()
return monthly.dropna(how="all")
def compute_seasonal_hourly_profile(
df: pd.DataFrame,
*,
value_column: str,
season_column: str = "season",
) -> pd.DataFrame:
"""
Retourne une matrice (heures x saisons) contenant la moyenne d'une variable.
"""
_ensure_datetime_index(df)
for col in (value_column, season_column):
if col not in df.columns:
raise KeyError(f"Colonne absente : {col}")
subset = df[[value_column, season_column]].dropna()
if subset.empty:
return pd.DataFrame(index=range(24))
grouped = subset.groupby([season_column, subset.index.hour])[value_column].mean()
pivot = grouped.unstack(season_column)
pivot = pivot.reindex(index=range(24))
order = [season for season in SEASON_LABELS if season in pivot.columns]
if order:
pivot = pivot[order]
pivot.index.name = "hour"
return pivot
def compute_monthly_daylight_hours(
df: pd.DataFrame,
*,
illuminance_column: str = "illuminance",
threshold_lux: float = 1000.0,
) -> pd.Series:
"""
Calcule la durée moyenne de luminosité (> threshold_lux) par mois (en heures par jour).
"""
_ensure_datetime_index(df)
if illuminance_column not in df.columns:
raise KeyError(f"Colonne absente : {illuminance_column}")
subset = df[[illuminance_column]].dropna()
if subset.empty:
return pd.Series(dtype=float)
time_step = _infer_time_step(subset.index)
hours_per_step = time_step.total_seconds() / 3600.0
daylight_flag = (subset[illuminance_column] >= threshold_lux).astype(float)
daylight_hours = daylight_flag * hours_per_step
daily_hours = daylight_hours.resample("1D").sum()
monthly_avg = daily_hours.resample("1ME").mean()
return monthly_avg.dropna()
def compute_mean_wind_components(
df: pd.DataFrame,
*,
freq: str = "1M",
) -> pd.DataFrame:
"""
Calcule les composantes zonale (u) et méridienne (v) du vent pour une fréquence donnée.
Retourne également la vitesse moyenne.
"""
if "wind_speed" not in df.columns or "wind_direction" not in df.columns:
raise KeyError("Les colonnes 'wind_speed' et 'wind_direction' sont requises.")
_ensure_datetime_index(df)
subset = df[["wind_speed", "wind_direction"]].dropna()
if subset.empty:
return pd.DataFrame(columns=["u", "v", "speed"])
radians = np.deg2rad(subset["wind_direction"].to_numpy(dtype=float))
speed = subset["wind_speed"].to_numpy(dtype=float)
u = speed * np.sin(radians) * -1 # composante est-ouest (positive vers l'est)
v = speed * np.cos(radians) * -1 # composante nord-sud (positive vers le nord)
vector_df = pd.DataFrame(
{
"u": u,
"v": v,
"speed": speed,
},
index=subset.index,
)
actual_freq = "1ME" if freq == "1M" else freq
grouped = vector_df.resample(actual_freq).mean()
return grouped.dropna(how="all")

View File

@ -1,6 +1,7 @@
# meteo/plots.py # meteo/plots.py
from __future__ import annotations from __future__ import annotations
import calendar
from pathlib import Path from pathlib import Path
from typing import Callable, Sequence from typing import Callable, Sequence
@ -11,7 +12,7 @@ import matplotlib.dates as mdates
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from .analysis import DiurnalCycleStats, BinnedStatistics from .analysis import DiurnalCycleStats, BinnedStatistics, MONTH_ORDER
from .season import SEASON_LABELS from .season import SEASON_LABELS
from .variables import Variable from .variables import Variable
@ -672,6 +673,60 @@ def plot_seasonal_boxplots(
return output_path.resolve() return output_path.resolve()
def plot_monthly_boxplots(
df: pd.DataFrame,
variables: Sequence[Variable],
output_path: str | Path,
) -> Path:
"""
Boxplots par mois (janvier décembre) pour plusieurs variables.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if not isinstance(df.index, pd.DatetimeIndex):
raise TypeError("plot_monthly_boxplots nécessite un DatetimeIndex.")
month_labels = [calendar.month_abbr[m].capitalize() for m in MONTH_ORDER]
n_vars = len(variables)
fig, axes = plt.subplots(n_vars, 1, figsize=(12, 3 * n_vars), sharex=True)
if n_vars == 1:
axes = [axes]
for ax, var in zip(axes, variables):
data = [
df.loc[df.index.month == month, var.column].dropna().to_numpy()
for month in MONTH_ORDER
]
if not any(len(arr) > 0 for arr in data):
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
ax.set_axis_off()
continue
box = ax.boxplot(
data,
labels=month_labels,
showfliers=False,
patch_artist=True,
)
colors = plt.get_cmap("Spectral")(np.linspace(0.2, 0.8, len(data)))
for patch, color in zip(box["boxes"], colors):
patch.set_facecolor(color)
patch.set_alpha(0.7)
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
ax.set_ylabel(ylabel)
ax.grid(True, linestyle=":", alpha=0.5)
axes[-1].set_xlabel("Mois")
fig.suptitle("Distribution mensuelle")
fig.tight_layout(rect=[0, 0, 1, 0.97])
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_binned_profiles( def plot_binned_profiles(
stats: BinnedStatistics, stats: BinnedStatistics,
variables: Sequence[Variable], variables: Sequence[Variable],
@ -889,3 +944,301 @@ def plot_rainfall_by_season(
fig.savefig(output_path, dpi=150) fig.savefig(output_path, dpi=150)
plt.close(fig) plt.close(fig)
return output_path.resolve() return output_path.resolve()
def plot_monthly_anomalies(
monthly_means: pd.DataFrame,
climatology: pd.DataFrame,
variables: Sequence[Variable],
output_path: str | Path,
*,
title: str = "Moyennes mensuelles vs climatologie",
) -> Path:
"""
Compare les moyennes mensuelles observées à la climatologie pour plusieurs variables.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if monthly_means.empty or climatology.empty:
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de données mensuelles disponibles.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
n_vars = len(variables)
fig, axes = plt.subplots(n_vars, 1, figsize=(12, 3 * n_vars), sharex=True)
if n_vars == 1:
axes = [axes]
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
for ax, var in zip(axes, variables):
actual = monthly_means[var.column].dropna()
if actual.empty:
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
ax.set_axis_off()
continue
months = actual.index.month
clim = climatology.loc[months, var.column].to_numpy(dtype=float)
anomaly = actual.to_numpy(dtype=float) - clim
ax.plot(actual.index, actual, color="tab:blue", label="Moyenne mensuelle")
ax.plot(actual.index, clim, color="tab:gray", linestyle="--", label="Climatologie")
ax.fill_between(
actual.index,
actual,
clim,
where=anomaly >= 0,
color="tab:blue",
alpha=0.15,
)
ax.fill_between(
actual.index,
actual,
clim,
where=anomaly < 0,
color="tab:red",
alpha=0.15,
)
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
ax.set_ylabel(ylabel)
ax.grid(True, linestyle=":", alpha=0.5)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
axes[-1].set_xlabel("Date")
axes[0].legend(loc="upper right")
fig.suptitle(title)
fig.tight_layout(rect=[0, 0, 1, 0.97])
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_wind_vector_series(
vector_df: pd.DataFrame,
output_path: str | Path,
*,
title: str = "Vecteurs moyens du vent",
) -> Path:
"""
Représente les composantes moyennes du vent sous forme de flèches (u/v).
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if vector_df.empty:
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de données de vent.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
times = vector_df.index
x = mdates.date2num(times)
u = vector_df["u"].to_numpy(dtype=float)
v = vector_df["v"].to_numpy(dtype=float)
speed = vector_df["speed"].to_numpy(dtype=float)
fig, ax = plt.subplots(figsize=(12, 4))
q = ax.quiver(
x,
np.zeros_like(x),
u,
v,
speed,
angles="xy",
scale_units="xy",
scale=1,
cmap="viridis",
)
ax.axhline(0, color="black", linewidth=0.5)
ax.set_ylim(-max(abs(v)) * 1.2 if np.any(v) else -1, max(abs(v)) * 1.2 if np.any(v) else 1)
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.ConciseDateFormatter(ax.xaxis.get_major_locator()))
ax.set_ylabel("Composante nord (v)")
ax.set_xlabel("Date")
ax.set_title(title)
cbar = fig.colorbar(q, ax=ax)
cbar.set_label("Vitesse moyenne (km/h)")
fig.tight_layout()
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_calendar_heatmap(
matrix: pd.DataFrame,
output_path: str | Path,
*,
title: str,
cmap: str = "YlGnBu",
colorbar_label: str = "",
) -> Path:
"""
Affiche une heatmap calendrier (lignes = mois, colonnes = jours).
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if matrix.empty:
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de données pour la heatmap.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
fig, ax = plt.subplots(figsize=(14, 6))
data = matrix.to_numpy(dtype=float)
im = ax.imshow(data, aspect="auto", cmap=cmap, interpolation="nearest")
ax.set_xticks(np.arange(matrix.shape[1]))
ax.set_xticklabels(matrix.columns, rotation=90)
ax.set_yticks(np.arange(matrix.shape[0]))
ax.set_yticklabels(matrix.index)
ax.set_xlabel("Jour du mois")
ax.set_ylabel("Mois")
ax.set_title(title)
cbar = fig.colorbar(im, ax=ax)
if colorbar_label:
cbar.set_label(colorbar_label)
fig.tight_layout()
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_weekday_profiles(
weekday_df: pd.DataFrame,
variables: Sequence[Variable],
output_path: str | Path,
*,
title: str,
) -> Path:
"""
Affiche les moyennes par jour de semaine pour plusieurs variables.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if weekday_df.empty:
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de données hebdomadaires.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
weekday_labels = ["Lun", "Mar", "Mer", "Jeu", "Ven", "Sam", "Dim"]
n_vars = len(variables)
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
if n_vars == 1:
axes = [axes]
x = np.arange(len(weekday_labels))
for ax, var in zip(axes, variables):
if var.column not in weekday_df.columns:
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
ax.set_axis_off()
continue
values = weekday_df[var.column].to_numpy(dtype=float)
ax.plot(x, values, marker="o", label=var.label)
ax.set_ylabel(f"{var.label} ({var.unit})" if var.unit else var.label)
ax.grid(True, linestyle=":", alpha=0.5)
ax.set_xticks(x)
ax.set_xticklabels(weekday_labels)
axes[-1].set_xlabel("Jour de semaine")
axes[0].legend(loc="upper right")
fig.suptitle(title)
fig.tight_layout(rect=[0, 0, 1, 0.97])
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_seasonal_hourly_profiles(
profile_df: pd.DataFrame,
output_path: str | Path,
*,
title: str,
ylabel: str,
) -> Path:
"""
Courbes moyennes par heure pour chaque saison.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if profile_df.empty or profile_df.isna().all().all():
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de profil saisonnier disponible.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
hours = profile_df.index.to_numpy(dtype=float)
fig, ax = plt.subplots(figsize=(10, 4))
colors = plt.get_cmap("turbo")(np.linspace(0.1, 0.9, profile_df.shape[1]))
for color, season in zip(colors, profile_df.columns):
ax.plot(hours, profile_df[season], label=season.capitalize(), color=color)
ax.set_xlabel("Heure locale")
ax.set_ylabel(ylabel)
ax.set_title(title)
ax.grid(True, linestyle=":", alpha=0.5)
ax.legend()
fig.tight_layout()
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
def plot_daylight_hours(
monthly_series: pd.Series,
output_path: str | Path,
*,
title: str = "Durée moyenne de luminosité (> seuil)",
) -> Path:
"""
Représente la durée moyenne quotidienne de luminosité par mois.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if monthly_series.empty:
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Pas de données sur la luminosité.", ha="center", va="center")
ax.set_axis_off()
fig.savefig(output_path, dpi=150, bbox_inches="tight")
plt.close(fig)
return output_path.resolve()
months = monthly_series.index
fig, ax = plt.subplots(figsize=(10, 4))
ax.bar(months, monthly_series.values, color="goldenrod", alpha=0.8)
ax.set_ylabel("Heures de luminosité par jour")
ax.set_xlabel("Mois")
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.ConciseDateFormatter(ax.xaxis.get_major_locator()))
ax.set_title(title)
ax.grid(True, axis="y", linestyle=":", alpha=0.5)
fig.tight_layout()
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()

View File

@ -0,0 +1,213 @@
# scripts/plot_calendar_overview.py
from __future__ import annotations
from pathlib import Path
import calendar
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from meteo.dataset import load_raw_csv
from meteo.analysis import compute_daily_rainfall_totals
from meteo.plots import plot_calendar_heatmap, plot_weekday_profiles
from meteo.variables import VARIABLES_BY_KEY
CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/calendar")
WEEKDAY_VARIABLE_KEYS = ["temperature", "humidity", "wind_speed", "illuminance"]
def _format_calendar_matrix(series: pd.Series, year: int, agg_label: str) -> pd.DataFrame:
"""
Transforme une série quotidienne en matrice mois x jours (1-31).
"""
start = pd.Timestamp(year=year, month=1, day=1, tz=series.index.tz)
end = pd.Timestamp(year=year, month=12, day=31, tz=series.index.tz)
filtered = series.loc[(series.index >= start) & (series.index <= end)]
matrix = pd.DataFrame(
np.nan,
index=[calendar.month_name[m][:3] for m in range(1, 13)],
columns=list(range(1, 32)),
)
for timestamp, value in filtered.items():
month = timestamp.month
day = timestamp.day
matrix.at[calendar.month_name[month][:3], day] = value
matrix.index.name = f"{agg_label} ({year})"
return matrix
def compute_daily_mean(df: pd.DataFrame, column: str) -> pd.Series:
return df[column].resample("1D").mean()
def plot_combined_calendar(
matrices: dict[str, pd.DataFrame],
output_path: Path,
*,
title: str,
) -> None:
if not matrices:
return
n = len(matrices)
fig, axes = plt.subplots(n, 1, figsize=(14, 4 * n), sharex=True)
if n == 1:
axes = [axes]
for ax, (label, matrix) in zip(axes, matrices.items()):
data = matrix.to_numpy(dtype=float)
im = ax.imshow(data, aspect="auto", interpolation="nearest", cmap=matrix.attrs.get("cmap", "viridis"))
ax.set_xticks(np.arange(matrix.shape[1]))
ax.set_xticklabels(matrix.columns, rotation=90)
ax.set_yticks(np.arange(matrix.shape[0]))
ax.set_yticklabels(matrix.index)
ax.set_ylabel(label)
cbar = fig.colorbar(im, ax=ax)
if matrix.attrs.get("colorbar_label"):
cbar.set_label(matrix.attrs["colorbar_label"])
axes[-1].set_xlabel("Jour du mois")
fig.suptitle(title)
fig.tight_layout(rect=[0, 0, 1, 0.97])
fig.savefig(output_path, dpi=150)
plt.close(fig)
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
if df.empty:
print("⚠ Dataset vide.")
return
if not isinstance(df.index, pd.DatetimeIndex):
print("⚠ Le dataset doit avoir un index temporel.")
return
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
latest_year = df.index.year.max()
print(f"Année retenue pour le calendrier : {latest_year}")
daily_totals = compute_daily_rainfall_totals(df=df)
daily_rain = daily_totals["daily_total"]
rain_matrix = _format_calendar_matrix(daily_rain, latest_year, "Pluie (mm)")
rain_matrix.attrs["cmap"] = "Blues"
rain_matrix.attrs["colorbar_label"] = "mm"
rain_path = OUTPUT_DIR / f"calendar_rain_{latest_year}.png"
plot_calendar_heatmap(
matrix=rain_matrix,
output_path=rain_path,
title=f"Pluie quotidienne - {latest_year}",
cmap="Blues",
colorbar_label="mm",
)
print(f"✔ Heatmap pluie {latest_year} : {rain_path}")
daily_temp = compute_daily_mean(df, "temperature")
temp_matrix = _format_calendar_matrix(daily_temp, latest_year, "Température (°C)")
temp_matrix.attrs["cmap"] = "coolwarm"
temp_matrix.attrs["colorbar_label"] = "°C"
temp_path = OUTPUT_DIR / f"calendar_temperature_{latest_year}.png"
plot_calendar_heatmap(
matrix=temp_matrix,
output_path=temp_path,
title=f"Température moyenne quotidienne - {latest_year}",
cmap="coolwarm",
colorbar_label="°C",
)
print(f"✔ Heatmap température {latest_year} : {temp_path}")
matrices_for_combined = {
"Pluie (mm)": rain_matrix,
"Température (°C)": temp_matrix,
}
if "pressure" in df.columns:
daily_pressure = compute_daily_mean(df, "pressure")
pressure_matrix = _format_calendar_matrix(daily_pressure, latest_year, "Pression (hPa)")
pressure_matrix.attrs["cmap"] = "Greens"
pressure_matrix.attrs["colorbar_label"] = "hPa"
pressure_path = OUTPUT_DIR / f"calendar_pressure_{latest_year}.png"
plot_calendar_heatmap(
matrix=pressure_matrix,
output_path=pressure_path,
title=f"Pression moyenne quotidienne - {latest_year}",
cmap="Greens",
colorbar_label="hPa",
)
print(f"✔ Heatmap pression {latest_year} : {pressure_path}")
matrices_for_combined["Pression (hPa)"] = pressure_matrix
if "illuminance" in df.columns:
daily_lux = compute_daily_mean(df, "illuminance")
lux_matrix = _format_calendar_matrix(daily_lux, latest_year, "Illuminance (lux)")
lux_matrix.attrs["cmap"] = "YlOrBr"
lux_matrix.attrs["colorbar_label"] = "lux"
lux_path = OUTPUT_DIR / f"calendar_illuminance_{latest_year}.png"
plot_calendar_heatmap(
matrix=lux_matrix,
output_path=lux_path,
title=f"Illuminance moyenne quotidienne - {latest_year}",
cmap="YlOrBr",
colorbar_label="lux",
)
print(f"✔ Heatmap illuminance {latest_year} : {lux_path}")
matrices_for_combined["Illuminance (lux)"] = lux_matrix
if "wind_speed" in df.columns:
daily_wind = compute_daily_mean(df, "wind_speed")
wind_matrix = _format_calendar_matrix(daily_wind, latest_year, "Vent (km/h)")
wind_matrix.attrs["cmap"] = "Purples"
wind_matrix.attrs["colorbar_label"] = "km/h"
wind_path = OUTPUT_DIR / f"calendar_wind_{latest_year}.png"
plot_calendar_heatmap(
matrix=wind_matrix,
output_path=wind_path,
title=f"Vitesse moyenne du vent - {latest_year}",
cmap="Purples",
colorbar_label="km/h",
)
print(f"✔ Heatmap vent {latest_year} : {wind_path}")
matrices_for_combined["Vent (km/h)"] = wind_matrix
combined_path = OUTPUT_DIR / f"calendar_combined_{latest_year}.png"
plot_combined_calendar(
matrices=matrices_for_combined,
output_path=combined_path,
title=f"Calendrier combiné {latest_year}",
)
print(f"✔ Calendrier combiné : {combined_path}")
hourly = df[WEEKDAY_VARIABLE_KEYS].resample("1h").mean()
weekday_stats = hourly.groupby(hourly.index.dayofweek).mean()
weekday_path = OUTPUT_DIR / "weekday_profiles.png"
variables = [VARIABLES_BY_KEY[key] for key in WEEKDAY_VARIABLE_KEYS]
plot_weekday_profiles(
weekday_df=weekday_stats,
variables=variables,
output_path=weekday_path,
title="Profils moyens par jour de semaine",
)
print(f"✔ Profils hebdomadaires : {weekday_path}")
print("✔ Graphiques calendrier générés.")
if __name__ == "__main__":
main()

View File

@ -12,7 +12,7 @@ from meteo.plots import plot_diurnal_cycle
CSV_PATH = Path("data/weather_minutely.csv") CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_PATH = Path("figures/diurnal_cycle/diurnal_cycle.png") OUTPUT_PATH = Path("figures/diurnal_cycle/diurnal_cycle.png")
VARIABLE_KEYS = ["temperature", "humidity", "pressure", "wind_speed"] VARIABLE_KEYS = ["temperature", "humidity", "pressure", "wind_speed", "illuminance"]
def main() -> None: def main() -> None:

View File

@ -0,0 +1,64 @@
# scripts/plot_illuminance_focus.py
from __future__ import annotations
from pathlib import Path
from meteo.dataset import load_raw_csv
from meteo.analysis import compute_seasonal_hourly_profile, compute_monthly_daylight_hours
from meteo.plots import plot_seasonal_hourly_profiles, plot_daylight_hours
CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/illuminance")
DAYLIGHT_THRESHOLD_LUX = 1000.0
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
if "illuminance" not in df.columns:
print("⚠ La colonne 'illuminance' est absente du dataset.")
return
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
seasonal_profile = compute_seasonal_hourly_profile(
df=df,
value_column="illuminance",
season_column="season",
)
seasonal_path = OUTPUT_DIR / "seasonal_diurnal_illuminance.png"
plot_seasonal_hourly_profiles(
profile_df=seasonal_profile,
output_path=seasonal_path,
title="Illuminance moyenne par heure et par saison",
ylabel="Illuminance (lux)",
)
print(f"✔ Profil saisonnier de l'illuminance : {seasonal_path}")
daylight_hours = compute_monthly_daylight_hours(
df=df,
illuminance_column="illuminance",
threshold_lux=DAYLIGHT_THRESHOLD_LUX,
)
daylight_path = OUTPUT_DIR / "monthly_daylight_hours.png"
plot_daylight_hours(
monthly_series=daylight_hours,
output_path=daylight_path,
title=f"Durée moyenne quotidienne > {DAYLIGHT_THRESHOLD_LUX:.0f} lx",
)
print(f"✔ Durée de luminosité mensuelle : {daylight_path}")
print("✔ Graphiques dédiés à l'illuminance générés.")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,54 @@
# scripts/plot_monthly_patterns.py
from __future__ import annotations
from pathlib import Path
from meteo.dataset import load_raw_csv
from meteo.variables import VARIABLES_BY_KEY
from meteo.analysis import compute_monthly_climatology, compute_monthly_means
from meteo.plots import plot_monthly_boxplots, plot_monthly_anomalies
CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/monthly")
BOXPLOT_KEYS = ["temperature", "humidity", "pressure", "wind_speed", "illuminance"]
ANOMALY_KEYS = ["temperature", "humidity", "illuminance"]
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
box_vars = [VARIABLES_BY_KEY[key] for key in BOXPLOT_KEYS]
boxplot_path = OUTPUT_DIR / "monthly_boxplots.png"
plot_monthly_boxplots(df=df, variables=box_vars, output_path=boxplot_path)
print(f"✔ Boxplots mensuels : {boxplot_path}")
anomaly_vars = [VARIABLES_BY_KEY[key] for key in ANOMALY_KEYS]
monthly_means = compute_monthly_means(df=df, columns=[v.column for v in anomaly_vars])
climatology = compute_monthly_climatology(df=df, columns=[v.column for v in anomaly_vars])
anomaly_path = OUTPUT_DIR / "monthly_anomalies.png"
plot_monthly_anomalies(
monthly_means=monthly_means,
climatology=climatology,
variables=anomaly_vars,
output_path=anomaly_path,
)
print(f"✔ Anomalies mensuelles : {anomaly_path}")
print("✔ Graphiques mensuels générés.")
if __name__ == "__main__":
main()

View File

@ -13,7 +13,7 @@ from meteo.season import sort_season_labels, SEASON_LABELS
CSV_PATH = Path("data/weather_minutely.csv") CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/seasonal") OUTPUT_DIR = Path("figures/seasonal")
BOXPLOT_VARIABLES = ["temperature", "humidity", "pressure", "wind_speed"] BOXPLOT_VARIABLES = ["temperature", "humidity", "pressure", "wind_speed", "illuminance"]
def infer_season_order(df) -> list[str]: def infer_season_order(df) -> list[str]:

View File

@ -0,0 +1,86 @@
# scripts/plot_wind_conditionals.py
from __future__ import annotations
from pathlib import Path
from meteo.dataset import load_raw_csv
from meteo.analysis import (
compute_wind_rose_distribution,
filter_by_condition,
compute_mean_wind_components,
)
from meteo.plots import plot_wind_rose, plot_wind_vector_series
CSV_PATH = Path("data/weather_minutely.csv")
OUTPUT_DIR = Path("figures/wind_conditionals")
RAIN_THRESHOLD = 0.2 # mm/h
def _export_wind_rose(df, label: str, filename: str) -> None:
if df.empty:
print(f"⚠ Pas de données pour {label}.")
return
frequencies, speed_labels, sector_size = compute_wind_rose_distribution(
df=df,
direction_sector_size=30,
speed_bins=(0, 5, 15, 30, 50, float("inf")),
)
if frequencies.empty:
print(f"⚠ Impossible de construire la rose pour {label}.")
return
output_path = OUTPUT_DIR / filename
plot_wind_rose(
frequencies=frequencies,
speed_bin_labels=speed_labels,
output_path=output_path,
sector_size_deg=sector_size,
cmap="plasma",
)
print(f"✔ Rose des vents ({label}) : {output_path}")
def main() -> None:
if not CSV_PATH.exists():
print(f"⚠ Fichier introuvable : {CSV_PATH}")
return
df = load_raw_csv(CSV_PATH)
if df.empty:
print("⚠ Dataset vide.")
return
print(f"Dataset minuté chargé : {CSV_PATH}")
print(f" Lignes : {len(df)}")
print(f" Colonnes : {list(df.columns)}")
print()
if "rain_rate" not in df.columns:
print("⚠ Colonne 'rain_rate' absente.")
return
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
rain_condition = df["rain_rate"].fillna(0.0) >= RAIN_THRESHOLD
dry_condition = df["rain_rate"].fillna(0.0) < RAIN_THRESHOLD
_export_wind_rose(df, "toutes conditions", "wind_rose_all.png")
_export_wind_rose(filter_by_condition(df, condition=rain_condition), "pluie", "wind_rose_rain.png")
_export_wind_rose(filter_by_condition(df, condition=dry_condition), "temps sec", "wind_rose_dry.png")
# Vecteurs moyens par mois
vector_df = compute_mean_wind_components(df=df, freq="1M")
vector_path = OUTPUT_DIR / "wind_vectors_monthly.png"
plot_wind_vector_series(
vector_df=vector_df,
output_path=vector_path,
title="Vecteurs moyens du vent (mensuel)",
)
print(f"✔ Vecteurs de vent mensuels : {vector_path}")
print("✔ Graphiques vent/pluie conditionnels générés.")
if __name__ == "__main__":
main()