You've already forked donnees_meteo
Refactoring
This commit is contained in:
47
meteo/analysis/__init__.py
Normal file
47
meteo/analysis/__init__.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""Point d'entrée public regroupant les utilitaires analytiques de la librairie."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from .core import BinnedStatistics, DiurnalCycleStats, MONTH_ORDER
|
||||
from .correlations import (
|
||||
compute_correlation_matrix,
|
||||
compute_correlation_matrix_for_variables,
|
||||
compute_lagged_correlation,
|
||||
compute_rolling_correlation_series,
|
||||
compute_rolling_correlations_for_pairs,
|
||||
)
|
||||
from .events import build_event_aligned_segments, detect_threshold_events
|
||||
from .filters import filter_by_condition
|
||||
from .rain import compute_daily_rainfall_totals, compute_rainfall_by_season
|
||||
from .seasonal import (
|
||||
compute_monthly_climatology,
|
||||
compute_monthly_daylight_hours,
|
||||
compute_monthly_means,
|
||||
compute_seasonal_hourly_profile,
|
||||
)
|
||||
from .statistics import compute_binned_statistics, compute_diurnal_cycle_statistics
|
||||
from .wind import compute_mean_wind_components, compute_wind_rose_distribution
|
||||
|
||||
__all__ = [
|
||||
"BinnedStatistics",
|
||||
"DiurnalCycleStats",
|
||||
"MONTH_ORDER",
|
||||
"compute_correlation_matrix",
|
||||
"compute_correlation_matrix_for_variables",
|
||||
"compute_lagged_correlation",
|
||||
"compute_rolling_correlation_series",
|
||||
"compute_rolling_correlations_for_pairs",
|
||||
"build_event_aligned_segments",
|
||||
"detect_threshold_events",
|
||||
"filter_by_condition",
|
||||
"compute_daily_rainfall_totals",
|
||||
"compute_rainfall_by_season",
|
||||
"compute_monthly_climatology",
|
||||
"compute_monthly_daylight_hours",
|
||||
"compute_monthly_means",
|
||||
"compute_seasonal_hourly_profile",
|
||||
"compute_binned_statistics",
|
||||
"compute_diurnal_cycle_statistics",
|
||||
"compute_mean_wind_components",
|
||||
"compute_wind_rose_distribution",
|
||||
]
|
||||
55
meteo/analysis/core.py
Normal file
55
meteo/analysis/core.py
Normal file
@@ -0,0 +1,55 @@
|
||||
"""Structures et helpers communs pour les analyses météorologiques."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
__all__ = ['MONTH_ORDER', 'DiurnalCycleStats', 'BinnedStatistics']
|
||||
|
||||
MONTH_ORDER = list(range(1, 13))
|
||||
|
||||
|
||||
@dataclass
|
||||
class DiurnalCycleStats:
|
||||
"""Conteneur pour les statistiques agrégées par heure (moyenne, médiane et quantiles optionnels)."""
|
||||
|
||||
mean: pd.DataFrame
|
||||
median: pd.DataFrame
|
||||
quantile_low: pd.DataFrame | None
|
||||
quantile_high: pd.DataFrame | None
|
||||
quantile_low_level: float | None = None
|
||||
quantile_high_level: float | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinnedStatistics:
|
||||
"""Structure englobant les résultats calculés sur des intervalles (bins) réguliers ou personnalisés."""
|
||||
|
||||
centers: np.ndarray
|
||||
intervals: pd.IntervalIndex
|
||||
counts: pd.Series
|
||||
mean: pd.DataFrame
|
||||
median: pd.DataFrame
|
||||
quantile_low: pd.DataFrame | None
|
||||
quantile_high: pd.DataFrame | None
|
||||
quantile_low_level: float | None = None
|
||||
quantile_high_level: float | None = None
|
||||
|
||||
def _ensure_datetime_index(df: pd.DataFrame) -> pd.DatetimeIndex:
|
||||
"""Valide la présence d'un index temporel et le retourne pour uniformiser les traitements."""
|
||||
|
||||
if not isinstance(df.index, pd.DatetimeIndex):
|
||||
raise TypeError("Cette fonction nécessite un DataFrame indexé par le temps.")
|
||||
return df.index
|
||||
|
||||
|
||||
def _infer_time_step(index: pd.DatetimeIndex) -> pd.Timedelta:
|
||||
"""Estime la résolution temporelle représentative (médiane) d'un index daté."""
|
||||
|
||||
diffs = index.to_series().diff().dropna()
|
||||
if diffs.empty:
|
||||
return pd.Timedelta(minutes=1)
|
||||
return diffs.median()
|
||||
201
meteo/analysis/correlations.py
Normal file
201
meteo/analysis/correlations.py
Normal file
@@ -0,0 +1,201 @@
|
||||
"""Calculs statistiques liés aux corrélations (instantanées, décalées, glissantes)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Literal, Sequence
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from meteo.variables import Variable
|
||||
|
||||
from .core import _ensure_datetime_index
|
||||
|
||||
__all__ = ['compute_correlation_matrix', 'compute_correlation_matrix_for_variables', 'compute_lagged_correlation', 'compute_rolling_correlation_series', 'compute_rolling_correlations_for_pairs']
|
||||
|
||||
|
||||
def compute_correlation_matrix(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
method: Literal["pearson", "spearman"] = "pearson",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule la matrice de corrélation entre toutes les colonnes numériques
|
||||
du DataFrame.
|
||||
|
||||
Attention :
|
||||
- La direction du vent est traitée ici comme une variable scalaire 0–360°,
|
||||
ce qui n'est pas idéal pour une analyse circulaire. On affinera plus tard
|
||||
si besoin (représentation en sin/cos).
|
||||
"""
|
||||
numeric_df = df.select_dtypes(include=["number"])
|
||||
corr = numeric_df.corr(method=method)
|
||||
return corr
|
||||
|
||||
def compute_correlation_matrix_for_variables(
|
||||
df: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
*,
|
||||
method: Literal["pearson", "spearman"] = "pearson",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule la matrice de corrélation pour un sous-ensemble de variables,
|
||||
dans un ordre bien défini.
|
||||
|
||||
Paramètres
|
||||
----------
|
||||
df :
|
||||
DataFrame contenant les colonnes à analyser.
|
||||
variables :
|
||||
Séquence de Variable décrivant les colonnes à prendre en compte.
|
||||
method :
|
||||
Méthode de corrélation pandas (pearson, spearman, ...).
|
||||
|
||||
Retour
|
||||
------
|
||||
DataFrame :
|
||||
Matrice de corrélation, index et colonnes dans le même ordre que
|
||||
`variables`, avec les colonnes pandas correspondant aux noms de colonnes
|
||||
du DataFrame (ex: "temperature", "humidity", ...).
|
||||
"""
|
||||
columns = [v.column for v in variables]
|
||||
missing = [c for c in columns if c not in df.columns]
|
||||
if missing:
|
||||
raise KeyError(f"Colonnes manquantes dans le DataFrame : {missing!r}")
|
||||
|
||||
numeric_df = df[columns].astype(float)
|
||||
corr = numeric_df.corr(method=method)
|
||||
|
||||
# On s'assure de l'ordre
|
||||
corr = corr.loc[columns, columns]
|
||||
return corr
|
||||
|
||||
def compute_lagged_correlation(
|
||||
df: pd.DataFrame,
|
||||
var_x: Variable,
|
||||
var_y: Variable,
|
||||
*,
|
||||
max_lag_minutes: int = 360,
|
||||
step_minutes: int = 10,
|
||||
method: Literal["pearson", "spearman"] = "pearson",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule la corrélation entre deux variables pour une série de décalages
|
||||
temporels (lags).
|
||||
|
||||
Convention :
|
||||
- lag > 0 : X "précède" Y de `lag` minutes.
|
||||
On corrèle X(t) avec Y(t + lag).
|
||||
- lag < 0 : Y "précède" X de |lag| minutes.
|
||||
On corrèle X(t) avec Y(t + lag), lag étant négatif.
|
||||
|
||||
Implémentation :
|
||||
- On utilise un DataFrame avec les deux colonnes,
|
||||
puis on applique un `shift` sur Y.
|
||||
"""
|
||||
if var_x.column not in df.columns or var_y.column not in df.columns:
|
||||
raise KeyError("Les colonnes demandées ne sont pas présentes dans le DataFrame.")
|
||||
|
||||
series_x = df[var_x.column]
|
||||
series_y = df[var_y.column]
|
||||
|
||||
lags = range(-max_lag_minutes, max_lag_minutes + 1, step_minutes)
|
||||
results: list[tuple[int, float]] = []
|
||||
|
||||
for lag in lags:
|
||||
# Y décalé de -lag : pour lag positif, on corrèle X(t) à Y(t + lag)
|
||||
shifted_y = series_y.shift(-lag)
|
||||
pair = pd.concat([series_x, shifted_y], axis=1).dropna()
|
||||
|
||||
if pair.empty:
|
||||
corr = np.nan
|
||||
else:
|
||||
corr = pair.iloc[:, 0].corr(pair.iloc[:, 1], method=method)
|
||||
|
||||
results.append((lag, corr))
|
||||
|
||||
lag_df = pd.DataFrame(results, columns=["lag_minutes", "correlation"])
|
||||
lag_df = lag_df.set_index("lag_minutes")
|
||||
|
||||
return lag_df
|
||||
|
||||
def compute_rolling_correlation_series(
|
||||
df: pd.DataFrame,
|
||||
var_x: Variable,
|
||||
var_y: Variable,
|
||||
*,
|
||||
window_minutes: int,
|
||||
min_valid_fraction: float = 0.6,
|
||||
step_minutes: int | None = None,
|
||||
method: Literal["pearson", "spearman"] = "pearson",
|
||||
) -> pd.Series:
|
||||
"""
|
||||
Calcule la corrélation glissante X/Y sur une fenêtre temporelle.
|
||||
Retourne une série indexée par l'instant de fin de fenêtre.
|
||||
"""
|
||||
if not 0 < min_valid_fraction <= 1:
|
||||
raise ValueError("min_valid_fraction doit être dans l'intervalle ]0, 1].")
|
||||
|
||||
for col in (var_x.column, var_y.column):
|
||||
if col not in df.columns:
|
||||
raise KeyError(f"Colonne absente du DataFrame : {col}")
|
||||
|
||||
_ensure_datetime_index(df)
|
||||
pair = df[[var_x.column, var_y.column]].dropna().sort_index()
|
||||
|
||||
if pair.empty:
|
||||
return pd.Series(dtype=float, name=f"{var_x.key}→{var_y.key}")
|
||||
|
||||
window = f"{window_minutes}min"
|
||||
min_periods = max(1, int(window_minutes * min_valid_fraction))
|
||||
if method not in {"pearson"}:
|
||||
raise NotImplementedError(
|
||||
"Les corrélations glissantes ne supportent actuellement que la méthode 'pearson'."
|
||||
)
|
||||
|
||||
rolling_corr = pair[var_x.column].rolling(
|
||||
window=window,
|
||||
min_periods=min_periods,
|
||||
).corr(pair[var_y.column])
|
||||
|
||||
rolling_corr = rolling_corr.dropna()
|
||||
rolling_corr.name = f"{var_x.key}→{var_y.key}"
|
||||
|
||||
if step_minutes and step_minutes > 1:
|
||||
rolling_corr = rolling_corr.resample(f"{step_minutes}min").mean().dropna()
|
||||
|
||||
return rolling_corr
|
||||
|
||||
def compute_rolling_correlations_for_pairs(
|
||||
df: pd.DataFrame,
|
||||
pairs: Sequence[tuple[Variable, Variable]],
|
||||
*,
|
||||
window_minutes: int,
|
||||
min_valid_fraction: float = 0.6,
|
||||
step_minutes: int | None = None,
|
||||
method: Literal["pearson", "spearman"] = "pearson",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule les corrélations glissantes pour plusieurs paires et aligne les
|
||||
résultats dans un DataFrame (index temps, colonnes = 'x→y').
|
||||
"""
|
||||
series_list: list[pd.Series] = []
|
||||
for var_x, var_y in pairs:
|
||||
corr = compute_rolling_correlation_series(
|
||||
df=df,
|
||||
var_x=var_x,
|
||||
var_y=var_y,
|
||||
window_minutes=window_minutes,
|
||||
min_valid_fraction=min_valid_fraction,
|
||||
step_minutes=step_minutes,
|
||||
method=method,
|
||||
)
|
||||
if not corr.empty:
|
||||
series_list.append(corr)
|
||||
|
||||
if not series_list:
|
||||
return pd.DataFrame()
|
||||
|
||||
result = pd.concat(series_list, axis=1)
|
||||
result = result.sort_index()
|
||||
return result
|
||||
111
meteo/analysis/events.py
Normal file
111
meteo/analysis/events.py
Normal file
@@ -0,0 +1,111 @@
|
||||
"""Détection d'événements météorologiques et extraction de segments alignés."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .core import _ensure_datetime_index, _infer_time_step
|
||||
|
||||
__all__ = ['detect_threshold_events', 'build_event_aligned_segments']
|
||||
|
||||
|
||||
def detect_threshold_events(
|
||||
series: pd.Series,
|
||||
*,
|
||||
threshold: float,
|
||||
min_duration: pd.Timedelta,
|
||||
min_gap: pd.Timedelta,
|
||||
) -> list[tuple[pd.Timestamp, pd.Timestamp]]:
|
||||
"""
|
||||
Détecte des événements où `series > threshold` (après remplissage des NaN
|
||||
par False) durant au moins `min_duration`. Les événements séparés d'un
|
||||
intervalle < min_gap sont fusionnés.
|
||||
"""
|
||||
if not isinstance(series.index, pd.DatetimeIndex):
|
||||
raise TypeError("series doit être indexée par le temps.")
|
||||
|
||||
mask = (series > threshold).fillna(False)
|
||||
if not mask.any():
|
||||
return []
|
||||
|
||||
groups = (mask != mask.shift()).cumsum()
|
||||
time_step = _infer_time_step(series.index)
|
||||
raw_events: list[tuple[pd.Timestamp, pd.Timestamp]] = []
|
||||
|
||||
for group_id, group_mask in mask.groupby(groups):
|
||||
if not group_mask.iloc[0]:
|
||||
continue
|
||||
start = group_mask.index[0]
|
||||
end = group_mask.index[-1] + time_step
|
||||
duration = end - start
|
||||
if duration >= min_duration:
|
||||
raw_events.append((start, end))
|
||||
|
||||
if not raw_events:
|
||||
return []
|
||||
|
||||
merged: list[tuple[pd.Timestamp, pd.Timestamp]] = []
|
||||
for start, end in raw_events:
|
||||
if not merged:
|
||||
merged.append((start, end))
|
||||
continue
|
||||
|
||||
prev_start, prev_end = merged[-1]
|
||||
if start - prev_end < min_gap:
|
||||
merged[-1] = (prev_start, max(prev_end, end))
|
||||
else:
|
||||
merged.append((start, end))
|
||||
|
||||
return merged
|
||||
|
||||
def build_event_aligned_segments(
|
||||
df: pd.DataFrame,
|
||||
events: Sequence[tuple[pd.Timestamp, pd.Timestamp]],
|
||||
columns: Sequence[str],
|
||||
*,
|
||||
window_before_minutes: int,
|
||||
window_after_minutes: int,
|
||||
resample_minutes: int = 1,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Extrait, pour chaque événement, les séries centrées sur son début et
|
||||
retourne un DataFrame MultiIndex (event_id, offset_minutes).
|
||||
"""
|
||||
if not events:
|
||||
return pd.DataFrame(columns=columns)
|
||||
|
||||
index = _ensure_datetime_index(df)
|
||||
data = df[columns].sort_index()
|
||||
|
||||
freq = pd.Timedelta(minutes=resample_minutes)
|
||||
if resample_minutes > 1:
|
||||
data = data.resample(freq).mean()
|
||||
|
||||
before = pd.Timedelta(minutes=window_before_minutes)
|
||||
after = pd.Timedelta(minutes=window_after_minutes)
|
||||
|
||||
segments: list[pd.DataFrame] = []
|
||||
|
||||
for event_id, (start, _end) in enumerate(events):
|
||||
window_start = start - before
|
||||
window_end = start + after
|
||||
window_index = pd.date_range(window_start, window_end, freq=freq)
|
||||
segment = data.reindex(window_index)
|
||||
if segment.empty:
|
||||
continue
|
||||
offsets = ((segment.index - start) / pd.Timedelta(minutes=1)).astype(float)
|
||||
multi_index = pd.MultiIndex.from_arrays(
|
||||
[np.full(len(segment), event_id), offsets],
|
||||
names=["event_id", "offset_minutes"],
|
||||
)
|
||||
segment.index = multi_index
|
||||
segments.append(segment)
|
||||
|
||||
if not segments:
|
||||
return pd.DataFrame(columns=columns)
|
||||
|
||||
aligned = pd.concat(segments)
|
||||
return aligned
|
||||
20
meteo/analysis/filters.py
Normal file
20
meteo/analysis/filters.py
Normal file
@@ -0,0 +1,20 @@
|
||||
"""Filtres simples appliqués aux DataFrames météo."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import pandas as pd
|
||||
|
||||
__all__ = ['filter_by_condition']
|
||||
|
||||
|
||||
def filter_by_condition(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
condition: pd.Series,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Renvoie une copie filtrée du DataFrame selon une condition booleenne alignée.
|
||||
"""
|
||||
mask = condition.reindex(df.index)
|
||||
mask = mask.fillna(False)
|
||||
return df.loc[mask]
|
||||
86
meteo/analysis/rain.py
Normal file
86
meteo/analysis/rain.py
Normal file
@@ -0,0 +1,86 @@
|
||||
"""Conversions et agrégations des mesures de pluie."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from meteo.season import SEASON_LABELS
|
||||
|
||||
from .core import _ensure_datetime_index, _infer_time_step
|
||||
|
||||
__all__ = ['compute_daily_rainfall_totals', 'compute_rainfall_by_season']
|
||||
|
||||
|
||||
def compute_daily_rainfall_totals(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
rate_column: str = "rain_rate",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Convertit un taux de pluie (mm/h) en cumuls journaliers et cumulés.
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
if rate_column not in df.columns:
|
||||
raise KeyError(f"Colonne absente : {rate_column}")
|
||||
|
||||
series = df[rate_column].fillna(0.0).sort_index()
|
||||
if series.empty:
|
||||
return pd.DataFrame(columns=["daily_total", "cumulative_total"])
|
||||
|
||||
time_step = _infer_time_step(series.index)
|
||||
diffs = series.index.to_series().diff()
|
||||
diffs = diffs.fillna(time_step)
|
||||
hours = diffs.dt.total_seconds() / 3600.0
|
||||
|
||||
rainfall_mm = series.to_numpy(dtype=float) * hours.to_numpy(dtype=float)
|
||||
rainfall_series = pd.Series(rainfall_mm, index=series.index)
|
||||
|
||||
daily_totals = rainfall_series.resample("1D").sum()
|
||||
cumulative = daily_totals.cumsum()
|
||||
|
||||
result = pd.DataFrame(
|
||||
{
|
||||
"daily_total": daily_totals,
|
||||
"cumulative_total": cumulative,
|
||||
}
|
||||
)
|
||||
return result
|
||||
|
||||
def compute_rainfall_by_season(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
rate_column: str = "rain_rate",
|
||||
season_column: str = "season",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule la pluie totale par saison (mm) ainsi que le nombre d'heures pluvieuses.
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
|
||||
for col in (rate_column, season_column):
|
||||
if col not in df.columns:
|
||||
raise KeyError(f"Colonne absente : {col}")
|
||||
|
||||
data = df[[rate_column, season_column]].copy()
|
||||
data[rate_column] = data[rate_column].fillna(0.0)
|
||||
data = data.dropna(subset=[season_column])
|
||||
if data.empty:
|
||||
return pd.DataFrame(columns=["total_rain_mm", "rainy_hours"]).astype(float)
|
||||
|
||||
time_step = _infer_time_step(data.index)
|
||||
diffs = data.index.to_series().diff().fillna(time_step)
|
||||
hours = diffs.dt.total_seconds() / 3600.0
|
||||
|
||||
rainfall_mm = data[rate_column].to_numpy(dtype=float) * hours.to_numpy(dtype=float)
|
||||
data["rainfall_mm"] = rainfall_mm
|
||||
data["rainy_hours"] = (rainfall_mm > 0).astype(float) * hours.to_numpy(dtype=float)
|
||||
|
||||
agg = data.groupby(season_column).agg(
|
||||
total_rain_mm=("rainfall_mm", "sum"),
|
||||
rainy_hours=("rainy_hours", "sum"),
|
||||
)
|
||||
|
||||
order = [season for season in SEASON_LABELS if season in agg.index]
|
||||
agg = agg.loc[order]
|
||||
return agg
|
||||
102
meteo/analysis/seasonal.py
Normal file
102
meteo/analysis/seasonal.py
Normal file
@@ -0,0 +1,102 @@
|
||||
"""Outils de moyennage saisonnier/mensuel et de profils horaires."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from meteo.season import SEASON_LABELS
|
||||
|
||||
from .core import MONTH_ORDER, _ensure_datetime_index, _infer_time_step
|
||||
|
||||
__all__ = ['compute_monthly_climatology', 'compute_monthly_means', 'compute_seasonal_hourly_profile', 'compute_monthly_daylight_hours']
|
||||
|
||||
|
||||
def compute_monthly_climatology(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
columns: Sequence[str],
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Moyenne par mois (1–12) pour les colonnes fournies.
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
missing = [col for col in columns if col not in df.columns]
|
||||
if missing:
|
||||
raise KeyError(f"Colonnes absentes : {missing}")
|
||||
|
||||
grouped = df[list(columns)].groupby(df.index.month).mean()
|
||||
grouped = grouped.reindex(MONTH_ORDER)
|
||||
grouped.index.name = "month"
|
||||
return grouped
|
||||
|
||||
def compute_monthly_means(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
columns: Sequence[str],
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Moyennes calendaire par mois (indexé sur la fin de mois).
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
missing = [col for col in columns if col not in df.columns]
|
||||
if missing:
|
||||
raise KeyError(f"Colonnes absentes : {missing}")
|
||||
|
||||
monthly = df[list(columns)].resample("1ME").mean()
|
||||
return monthly.dropna(how="all")
|
||||
|
||||
def compute_seasonal_hourly_profile(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
value_column: str,
|
||||
season_column: str = "season",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Retourne une matrice (heures x saisons) contenant la moyenne d'une variable.
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
for col in (value_column, season_column):
|
||||
if col not in df.columns:
|
||||
raise KeyError(f"Colonne absente : {col}")
|
||||
|
||||
subset = df[[value_column, season_column]].dropna()
|
||||
if subset.empty:
|
||||
return pd.DataFrame(index=range(24))
|
||||
|
||||
grouped = subset.groupby([season_column, subset.index.hour])[value_column].mean()
|
||||
pivot = grouped.unstack(season_column)
|
||||
pivot = pivot.reindex(index=range(24))
|
||||
order = [season for season in SEASON_LABELS if season in pivot.columns]
|
||||
if order:
|
||||
pivot = pivot[order]
|
||||
pivot.index.name = "hour"
|
||||
return pivot
|
||||
|
||||
def compute_monthly_daylight_hours(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
illuminance_column: str = "illuminance",
|
||||
threshold_lux: float = 1000.0,
|
||||
) -> pd.Series:
|
||||
"""
|
||||
Calcule la durée moyenne de luminosité (> threshold_lux) par mois (en heures par jour).
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
if illuminance_column not in df.columns:
|
||||
raise KeyError(f"Colonne absente : {illuminance_column}")
|
||||
|
||||
subset = df[[illuminance_column]].dropna()
|
||||
if subset.empty:
|
||||
return pd.Series(dtype=float)
|
||||
|
||||
time_step = _infer_time_step(subset.index)
|
||||
hours_per_step = time_step.total_seconds() / 3600.0
|
||||
|
||||
daylight_flag = (subset[illuminance_column] >= threshold_lux).astype(float)
|
||||
daylight_hours = daylight_flag * hours_per_step
|
||||
|
||||
daily_hours = daylight_hours.resample("1D").sum()
|
||||
monthly_avg = daily_hours.resample("1ME").mean()
|
||||
return monthly_avg.dropna()
|
||||
140
meteo/analysis/statistics.py
Normal file
140
meteo/analysis/statistics.py
Normal file
@@ -0,0 +1,140 @@
|
||||
"""Statistiques descriptives utilisées par les tracés (cycle diurne, regroupements par bins)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from meteo.variables import Variable
|
||||
|
||||
from .core import BinnedStatistics, DiurnalCycleStats, _ensure_datetime_index
|
||||
|
||||
__all__ = ['compute_diurnal_cycle_statistics', 'compute_binned_statistics']
|
||||
|
||||
|
||||
def compute_diurnal_cycle_statistics(
|
||||
df: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
*,
|
||||
quantiles: tuple[float, float] | None = (0.25, 0.75),
|
||||
) -> DiurnalCycleStats:
|
||||
"""
|
||||
Agrège les variables par heure locale pour visualiser un cycle diurne moyen.
|
||||
"""
|
||||
_ensure_datetime_index(df)
|
||||
columns = [v.column for v in variables]
|
||||
|
||||
grouped = df[columns].groupby(df.index.hour)
|
||||
mean_df = grouped.mean()
|
||||
median_df = grouped.median()
|
||||
|
||||
quantile_low_df: pd.DataFrame | None = None
|
||||
quantile_high_df: pd.DataFrame | None = None
|
||||
q_low = q_high = None
|
||||
|
||||
if quantiles is not None:
|
||||
q_low, q_high = quantiles
|
||||
if q_low is not None:
|
||||
quantile_low_df = grouped.quantile(q_low)
|
||||
if q_high is not None:
|
||||
quantile_high_df = grouped.quantile(q_high)
|
||||
|
||||
return DiurnalCycleStats(
|
||||
mean=mean_df,
|
||||
median=median_df,
|
||||
quantile_low=quantile_low_df,
|
||||
quantile_high=quantile_high_df,
|
||||
quantile_low_level=q_low,
|
||||
quantile_high_level=q_high,
|
||||
)
|
||||
|
||||
def compute_binned_statistics(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
bin_source_column: str,
|
||||
target_columns: Sequence[str],
|
||||
bins: Sequence[float] | np.ndarray,
|
||||
min_count: int = 30,
|
||||
quantiles: tuple[float, float] | None = (0.25, 0.75),
|
||||
) -> BinnedStatistics:
|
||||
"""
|
||||
Calcule des statistiques (mean/median/quantiles) pour plusieurs colonnes
|
||||
en regroupant les données selon des intervalles définis sur une colonne source.
|
||||
"""
|
||||
if bin_source_column not in df.columns:
|
||||
raise KeyError(f"Colonne source absente : {bin_source_column}")
|
||||
|
||||
missing_targets = [col for col in target_columns if col not in df.columns]
|
||||
if missing_targets:
|
||||
raise KeyError(f"Colonnes cibles absentes : {missing_targets!r}")
|
||||
|
||||
subset_cols = [bin_source_column, *target_columns]
|
||||
data = df[subset_cols].dropna(subset=[bin_source_column])
|
||||
|
||||
if data.empty:
|
||||
empty_interval_index = pd.IntervalIndex([])
|
||||
empty_df = pd.DataFrame(columns=target_columns)
|
||||
empty_counts = pd.Series(dtype=int)
|
||||
return BinnedStatistics(
|
||||
centers=np.array([]),
|
||||
intervals=empty_interval_index,
|
||||
counts=empty_counts,
|
||||
mean=empty_df,
|
||||
median=empty_df,
|
||||
quantile_low=None,
|
||||
quantile_high=None,
|
||||
)
|
||||
|
||||
categories = pd.cut(data[bin_source_column], bins=bins, include_lowest=True)
|
||||
grouped = data.groupby(categories, observed=False)
|
||||
|
||||
counts = grouped.size()
|
||||
valid_mask = counts >= max(1, min_count)
|
||||
valid_intervals = counts.index[valid_mask]
|
||||
|
||||
if len(valid_intervals) == 0:
|
||||
empty_interval_index = pd.IntervalIndex([])
|
||||
empty_df = pd.DataFrame(columns=target_columns)
|
||||
empty_counts = pd.Series(dtype=int)
|
||||
return BinnedStatistics(
|
||||
centers=np.array([]),
|
||||
intervals=empty_interval_index,
|
||||
counts=empty_counts,
|
||||
mean=empty_df,
|
||||
median=empty_df,
|
||||
quantile_low=None,
|
||||
quantile_high=None,
|
||||
)
|
||||
|
||||
interval_index = pd.IntervalIndex(valid_intervals)
|
||||
|
||||
mean_df = grouped[target_columns].mean().loc[interval_index]
|
||||
median_df = grouped[target_columns].median().loc[interval_index]
|
||||
|
||||
q_low = q_high = None
|
||||
quantile_low_df: pd.DataFrame | None = None
|
||||
quantile_high_df: pd.DataFrame | None = None
|
||||
|
||||
if quantiles is not None:
|
||||
q_low, q_high = quantiles
|
||||
if q_low is not None:
|
||||
quantile_low_df = grouped[target_columns].quantile(q_low).loc[interval_index]
|
||||
if q_high is not None:
|
||||
quantile_high_df = grouped[target_columns].quantile(q_high).loc[interval_index]
|
||||
|
||||
centers = np.array([interval.mid for interval in interval_index])
|
||||
filtered_counts = counts.loc[interval_index]
|
||||
|
||||
return BinnedStatistics(
|
||||
centers=centers,
|
||||
intervals=interval_index,
|
||||
counts=filtered_counts,
|
||||
mean=mean_df,
|
||||
median=median_df,
|
||||
quantile_low=quantile_low_df,
|
||||
quantile_high=quantile_high_df,
|
||||
quantile_low_level=q_low,
|
||||
quantile_high_level=q_high,
|
||||
)
|
||||
108
meteo/analysis/wind.py
Normal file
108
meteo/analysis/wind.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""Fonctions spécifiques aux analyses de vent (roses et composantes)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .core import _ensure_datetime_index
|
||||
|
||||
__all__ = ['compute_wind_rose_distribution', 'compute_mean_wind_components']
|
||||
|
||||
|
||||
def _format_speed_bin_labels(speed_bins: Sequence[float]) -> list[str]:
|
||||
labels: list[str] = []
|
||||
for i in range(len(speed_bins) - 1):
|
||||
low = speed_bins[i]
|
||||
high = speed_bins[i + 1]
|
||||
if np.isinf(high):
|
||||
labels.append(f"≥{low:g}")
|
||||
else:
|
||||
labels.append(f"{low:g}–{high:g}")
|
||||
return labels
|
||||
|
||||
def compute_wind_rose_distribution(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
direction_sector_size: int = 30,
|
||||
speed_bins: Sequence[float] = (0, 10, 20, 30, 50, float("inf")),
|
||||
) -> tuple[pd.DataFrame, list[str], float]:
|
||||
"""
|
||||
Regroupe la distribution vent/direction en secteurs angulaires et classes de vitesse.
|
||||
Retourne un DataFrame indexé par le début du secteur (en degrés) et colonnes = classes de vitesse (%).
|
||||
"""
|
||||
if direction_sector_size <= 0 or direction_sector_size > 180:
|
||||
raise ValueError("direction_sector_size doit être compris entre 1 et 180 degrés.")
|
||||
|
||||
if "wind_speed" not in df.columns or "wind_direction" not in df.columns:
|
||||
raise KeyError("Le DataFrame doit contenir 'wind_speed' et 'wind_direction'.")
|
||||
|
||||
data = df[["wind_speed", "wind_direction"]].dropna()
|
||||
if data.empty:
|
||||
return pd.DataFrame(), [], float(direction_sector_size)
|
||||
|
||||
n_sectors = int(360 / direction_sector_size)
|
||||
direction = data["wind_direction"].to_numpy(dtype=float) % 360.0
|
||||
sector_indices = np.floor(direction / direction_sector_size).astype(int) % n_sectors
|
||||
|
||||
bins = list(speed_bins)
|
||||
if not np.isinf(bins[-1]):
|
||||
bins.append(float("inf"))
|
||||
labels = _format_speed_bin_labels(bins)
|
||||
|
||||
speed_categories = pd.cut(
|
||||
data["wind_speed"],
|
||||
bins=bins,
|
||||
right=False,
|
||||
include_lowest=True,
|
||||
labels=labels,
|
||||
)
|
||||
|
||||
counts = (
|
||||
pd.crosstab(sector_indices, speed_categories)
|
||||
.reindex(range(n_sectors), fill_value=0)
|
||||
.reindex(columns=labels, fill_value=0)
|
||||
)
|
||||
|
||||
total = counts.values.sum()
|
||||
frequencies = counts / total * 100.0 if total > 0 else counts.astype(float)
|
||||
frequencies.index = frequencies.index * direction_sector_size
|
||||
return frequencies, labels, float(direction_sector_size)
|
||||
|
||||
def compute_mean_wind_components(
|
||||
df: pd.DataFrame,
|
||||
*,
|
||||
freq: str = "1M",
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Calcule les composantes zonale (u) et méridienne (v) du vent pour une fréquence donnée.
|
||||
Retourne également la vitesse moyenne.
|
||||
"""
|
||||
if "wind_speed" not in df.columns or "wind_direction" not in df.columns:
|
||||
raise KeyError("Les colonnes 'wind_speed' et 'wind_direction' sont requises.")
|
||||
|
||||
_ensure_datetime_index(df)
|
||||
subset = df[["wind_speed", "wind_direction"]].dropna()
|
||||
if subset.empty:
|
||||
return pd.DataFrame(columns=["u", "v", "speed"])
|
||||
|
||||
radians = np.deg2rad(subset["wind_direction"].to_numpy(dtype=float))
|
||||
speed = subset["wind_speed"].to_numpy(dtype=float)
|
||||
|
||||
u = speed * np.sin(radians) * -1 # composante est-ouest (positive vers l'est)
|
||||
v = speed * np.cos(radians) * -1 # composante nord-sud (positive vers le nord)
|
||||
|
||||
vector_df = pd.DataFrame(
|
||||
{
|
||||
"u": u,
|
||||
"v": v,
|
||||
"speed": speed,
|
||||
},
|
||||
index=subset.index,
|
||||
)
|
||||
|
||||
actual_freq = "1ME" if freq == "1M" else freq
|
||||
grouped = vector_df.resample(actual_freq).mean()
|
||||
return grouped.dropna(how="all")
|
||||
Reference in New Issue
Block a user