You've already forked donnees_meteo
Refactoring
This commit is contained in:
50
meteo/plots/__init__.py
Normal file
50
meteo/plots/__init__.py
Normal file
@@ -0,0 +1,50 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from .calendar import plot_calendar_heatmap, plot_weekday_profiles
|
||||
from .correlations import (
|
||||
plot_correlation_heatmap,
|
||||
plot_lagged_correlation,
|
||||
plot_rolling_correlation_heatmap,
|
||||
)
|
||||
from .rain import plot_daily_rainfall_hyetograph, plot_rainfall_by_season
|
||||
from .relationships import (
|
||||
plot_event_composite,
|
||||
plot_hexbin_with_third_variable,
|
||||
plot_scatter_pair,
|
||||
)
|
||||
from .seasonal_profiles import (
|
||||
plot_daylight_hours,
|
||||
plot_diurnal_cycle,
|
||||
plot_seasonal_hourly_profiles,
|
||||
)
|
||||
from .seasonal_stats import (
|
||||
plot_binned_profiles,
|
||||
plot_monthly_anomalies,
|
||||
plot_monthly_boxplots,
|
||||
plot_seasonal_boxplots,
|
||||
)
|
||||
from .wind import plot_wind_rose, plot_wind_vector_series
|
||||
|
||||
__all__ = [
|
||||
"export_plot_dataset",
|
||||
"plot_calendar_heatmap",
|
||||
"plot_weekday_profiles",
|
||||
"plot_correlation_heatmap",
|
||||
"plot_lagged_correlation",
|
||||
"plot_rolling_correlation_heatmap",
|
||||
"plot_daily_rainfall_hyetograph",
|
||||
"plot_rainfall_by_season",
|
||||
"plot_event_composite",
|
||||
"plot_hexbin_with_third_variable",
|
||||
"plot_scatter_pair",
|
||||
"plot_daylight_hours",
|
||||
"plot_diurnal_cycle",
|
||||
"plot_seasonal_hourly_profiles",
|
||||
"plot_binned_profiles",
|
||||
"plot_monthly_anomalies",
|
||||
"plot_monthly_boxplots",
|
||||
"plot_seasonal_boxplots",
|
||||
"plot_wind_rose",
|
||||
"plot_wind_vector_series",
|
||||
]
|
||||
50
meteo/plots/base.py
Normal file
50
meteo/plots/base.py
Normal file
@@ -0,0 +1,50 @@
|
||||
"""Fonctions utilitaires pour exporter les jeux de données associés aux figures."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
__all__ = ["export_plot_dataset"]
|
||||
|
||||
|
||||
def export_plot_dataset(data: Any, output_path: str | Path, *, suffix: str = ".csv") -> Path | None:
|
||||
"""
|
||||
Sauvegarde, en regard du fichier image exporté, les données brutes ayant servi à construire la figure.
|
||||
"""
|
||||
|
||||
if data is None:
|
||||
return None
|
||||
|
||||
output_path = Path(output_path)
|
||||
dataset_path = output_path.with_suffix(suffix)
|
||||
dataset_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _normalize(value: Any, *, default_name: str = "value") -> pd.DataFrame:
|
||||
if isinstance(value, pd.DataFrame):
|
||||
return value.copy()
|
||||
if isinstance(value, pd.Series):
|
||||
return value.to_frame(name=value.name or default_name)
|
||||
if isinstance(value, np.ndarray):
|
||||
return pd.DataFrame(value)
|
||||
return pd.DataFrame(value)
|
||||
|
||||
if isinstance(data, dict):
|
||||
frames: list[pd.DataFrame] = []
|
||||
for key, value in data.items():
|
||||
if value is None:
|
||||
continue
|
||||
frame = _normalize(value, default_name=str(key))
|
||||
frame = pd.concat({str(key): frame}, axis=1)
|
||||
frames.append(frame)
|
||||
if not frames:
|
||||
return None
|
||||
export_df = pd.concat(frames, axis=1)
|
||||
else:
|
||||
export_df = _normalize(data)
|
||||
|
||||
export_df.to_csv(dataset_path)
|
||||
return dataset_path
|
||||
114
meteo/plots/calendar.py
Normal file
114
meteo/plots/calendar.py
Normal file
@@ -0,0 +1,114 @@
|
||||
"""Tracés orientés calendrier (heatmaps quotidiennes et profils hebdomadaires)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from meteo.variables import Variable
|
||||
|
||||
__all__ = ['plot_calendar_heatmap', 'plot_weekday_profiles']
|
||||
|
||||
|
||||
def plot_calendar_heatmap(
|
||||
matrix: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str,
|
||||
cmap: str = "YlGnBu",
|
||||
colorbar_label: str = "",
|
||||
) -> Path:
|
||||
"""
|
||||
Affiche une heatmap calendrier (lignes = mois, colonnes = jours).
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
export_plot_dataset(matrix, output_path)
|
||||
|
||||
if matrix.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données pour la heatmap.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
fig, ax = plt.subplots(figsize=(14, 6))
|
||||
data = matrix.to_numpy(dtype=float)
|
||||
im = ax.imshow(data, aspect="auto", cmap=cmap, interpolation="nearest")
|
||||
|
||||
ax.set_xticks(np.arange(matrix.shape[1]))
|
||||
ax.set_xticklabels(matrix.columns, rotation=90)
|
||||
ax.set_yticks(np.arange(matrix.shape[0]))
|
||||
ax.set_yticklabels(matrix.index)
|
||||
|
||||
ax.set_xlabel("Jour du mois")
|
||||
ax.set_ylabel("Mois")
|
||||
ax.set_title(title)
|
||||
|
||||
cbar = fig.colorbar(im, ax=ax)
|
||||
if colorbar_label:
|
||||
cbar.set_label(colorbar_label)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_weekday_profiles(
|
||||
weekday_df: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str,
|
||||
) -> Path:
|
||||
"""
|
||||
Affiche les moyennes par jour de semaine pour plusieurs variables.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if weekday_df.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données hebdomadaires.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(weekday_df, output_path)
|
||||
|
||||
weekday_labels = ["Lun", "Mar", "Mer", "Jeu", "Ven", "Sam", "Dim"]
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
x = np.arange(len(weekday_labels))
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
if var.column not in weekday_df.columns:
|
||||
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
continue
|
||||
|
||||
values = weekday_df[var.column].to_numpy(dtype=float)
|
||||
ax.plot(x, values, marker="o", label=var.label)
|
||||
ax.set_ylabel(f"{var.label} ({var.unit})" if var.unit else var.label)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
ax.set_xticks(x)
|
||||
ax.set_xticklabels(weekday_labels)
|
||||
|
||||
axes[-1].set_xlabel("Jour de semaine")
|
||||
axes[0].legend(loc="upper right")
|
||||
fig.suptitle(title)
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
182
meteo/plots/correlations.py
Normal file
182
meteo/plots/correlations.py
Normal file
@@ -0,0 +1,182 @@
|
||||
"""Visualisations d'indicateurs de corrélation (heatmaps et séries décalées)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from meteo.variables import Variable
|
||||
|
||||
__all__ = ['plot_lagged_correlation', 'plot_correlation_heatmap', 'plot_rolling_correlation_heatmap']
|
||||
|
||||
|
||||
def plot_lagged_correlation(
|
||||
lag_df: pd.DataFrame,
|
||||
var_x: Variable,
|
||||
var_y: Variable,
|
||||
output_path: str | Path,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace la corrélation en fonction du lag (en minutes) entre deux variables.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
export_plot_dataset(lag_df, output_path)
|
||||
|
||||
plt.figure()
|
||||
plt.plot(lag_df.index, lag_df["correlation"])
|
||||
plt.axvline(0, linestyle="--") # lag = 0
|
||||
plt.xlabel("Décalage (minutes)\n(lag > 0 : X précède Y)")
|
||||
plt.ylabel("Corrélation")
|
||||
plt.title(f"Corrélation décalée : {var_x.label} → {var_y.label}")
|
||||
plt.grid(True)
|
||||
plt.tight_layout()
|
||||
plt.savefig(output_path, dpi=150)
|
||||
plt.close()
|
||||
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_correlation_heatmap(
|
||||
corr: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
annotate: bool = True,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace une heatmap de la matrice de corrélation.
|
||||
|
||||
Paramètres
|
||||
----------
|
||||
corr :
|
||||
Matrice de corrélation (index et colonnes doivent correspondre
|
||||
aux noms de colonnes des variables).
|
||||
variables :
|
||||
Liste de Variable, dans l'ordre où elles doivent apparaître.
|
||||
output_path :
|
||||
Chemin du fichier image à écrire.
|
||||
annotate :
|
||||
Si True, affiche la valeur numérique dans chaque case.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
columns = [v.column for v in variables]
|
||||
labels = [v.label for v in variables]
|
||||
|
||||
# On aligne la matrice sur l'ordre désiré
|
||||
corr = corr.loc[columns, columns]
|
||||
export_plot_dataset(corr, output_path)
|
||||
|
||||
data = corr.to_numpy()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
im = ax.imshow(data, vmin=-1.0, vmax=1.0)
|
||||
|
||||
# Ticks et labels
|
||||
ax.set_xticks(np.arange(len(labels)))
|
||||
ax.set_yticks(np.arange(len(labels)))
|
||||
ax.set_xticklabels(labels, rotation=45, ha="right")
|
||||
ax.set_yticklabels(labels)
|
||||
|
||||
# Axe en haut/bas selon préférence (ici on laisse en bas)
|
||||
ax.set_title("Matrice de corrélation (coef. de Pearson)")
|
||||
|
||||
# Barre de couleur
|
||||
cbar = plt.colorbar(im, ax=ax)
|
||||
cbar.set_label("Corrélation")
|
||||
|
||||
# Annotation des cases
|
||||
if annotate:
|
||||
n = data.shape[0]
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
if i == j:
|
||||
text = "—"
|
||||
else:
|
||||
val = data[i, j]
|
||||
if np.isnan(val):
|
||||
text = ""
|
||||
else:
|
||||
text = f"{val:.2f}"
|
||||
ax.text(
|
||||
j,
|
||||
i,
|
||||
text,
|
||||
ha="center",
|
||||
va="center",
|
||||
)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_rolling_correlation_heatmap(
|
||||
rolling_corr: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
cmap: str = "coolwarm",
|
||||
vmin: float = -1.0,
|
||||
vmax: float = 1.0,
|
||||
time_tick_count: int = 6,
|
||||
) -> Path:
|
||||
"""
|
||||
Visualise l'évolution de corrélations glissantes pour plusieurs paires.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
export_plot_dataset(rolling_corr, output_path)
|
||||
|
||||
if rolling_corr.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Aucune donnée de corrélation glissante.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
labels = list(rolling_corr.columns)
|
||||
data = rolling_corr.to_numpy().T
|
||||
|
||||
height = max(3.0, 0.6 * len(labels))
|
||||
fig, ax = plt.subplots(figsize=(10, height))
|
||||
im = ax.imshow(data, aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
|
||||
|
||||
ax.set_yticks(np.arange(len(labels)))
|
||||
ax.set_yticklabels(labels)
|
||||
|
||||
if isinstance(rolling_corr.index, pd.DatetimeIndex):
|
||||
times = rolling_corr.index
|
||||
if len(times) > 1:
|
||||
tick_idx = np.linspace(0, len(times) - 1, num=min(time_tick_count, len(times)), dtype=int)
|
||||
else:
|
||||
tick_idx = np.array([0])
|
||||
tick_labels = [times[i].strftime("%Y-%m-%d\n%H:%M") for i in tick_idx]
|
||||
else:
|
||||
tick_idx = np.linspace(0, len(rolling_corr.index) - 1, num=min(time_tick_count, len(rolling_corr.index)), dtype=int)
|
||||
tick_labels = [str(rolling_corr.index[i]) for i in tick_idx]
|
||||
|
||||
ax.set_xticks(tick_idx)
|
||||
ax.set_xticklabels(tick_labels, rotation=30, ha="right")
|
||||
|
||||
ax.set_xlabel("Temps (fin de fenêtre)")
|
||||
ax.set_ylabel("Paire de variables")
|
||||
ax.set_title("Corrélations glissantes")
|
||||
|
||||
cbar = fig.colorbar(im, ax=ax)
|
||||
cbar.set_label("Coefficient de corrélation")
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
return output_path.resolve()
|
||||
142
meteo/plots/rain.py
Normal file
142
meteo/plots/rain.py
Normal file
@@ -0,0 +1,142 @@
|
||||
"""Graphiques consacrés aux cumuls de pluie et à leur répartition temporelle."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
|
||||
__all__ = ['plot_daily_rainfall_hyetograph', 'plot_rainfall_by_season']
|
||||
|
||||
|
||||
def plot_daily_rainfall_hyetograph(
|
||||
daily_rain: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
) -> Path:
|
||||
"""
|
||||
Affiche les cumuls quotidiens de pluie (barres) et le cumul annuel (ligne).
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if daily_rain.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données de précipitations disponibles.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(daily_rain, output_path)
|
||||
|
||||
fig, ax1 = plt.subplots(figsize=(12, 5))
|
||||
ax1.bar(
|
||||
daily_rain.index,
|
||||
daily_rain["daily_total"],
|
||||
width=0.8,
|
||||
color="tab:blue",
|
||||
alpha=0.7,
|
||||
label="Pluie quotidienne",
|
||||
)
|
||||
ax1.set_ylabel("Pluie quotidienne (mm)")
|
||||
ax1.set_xlabel("Date")
|
||||
ax1.grid(True, axis="y", linestyle=":", alpha=0.5)
|
||||
|
||||
ax2 = ax1.twinx()
|
||||
ax2.plot(
|
||||
daily_rain.index,
|
||||
daily_rain["cumulative_total"],
|
||||
color="tab:red",
|
||||
linewidth=2,
|
||||
label="Cumul annuel",
|
||||
)
|
||||
ax2.set_ylabel("Pluie cumulée (mm)")
|
||||
|
||||
locator = mdates.AutoDateLocator()
|
||||
formatter = mdates.ConciseDateFormatter(locator)
|
||||
ax1.xaxis.set_major_locator(locator)
|
||||
ax1.xaxis.set_major_formatter(formatter)
|
||||
|
||||
lines_labels = [
|
||||
(ax1.get_legend_handles_labels()),
|
||||
(ax2.get_legend_handles_labels()),
|
||||
]
|
||||
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
||||
ax1.legend(lines, labels, loc="upper left")
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_rainfall_by_season(
|
||||
rainfall_df: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str = "Pluie cumulée par saison",
|
||||
) -> Path:
|
||||
"""
|
||||
Affiche la pluie cumulée par saison ainsi que le nombre d'heures pluvieuses.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if rainfall_df.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données de pluie saisonnière.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(rainfall_df, output_path)
|
||||
|
||||
seasons = rainfall_df.index.tolist()
|
||||
x = np.arange(len(seasons))
|
||||
totals = rainfall_df["total_rain_mm"].to_numpy(dtype=float)
|
||||
|
||||
fig, ax1 = plt.subplots(figsize=(9, 4))
|
||||
bars = ax1.bar(x, totals, color="tab:blue", alpha=0.7, label="Pluie cumulée")
|
||||
ax1.set_ylabel("Pluie cumulée (mm)")
|
||||
ax1.set_xlabel("Saison")
|
||||
ax1.set_xticks(x)
|
||||
ax1.set_xticklabels([season.capitalize() for season in seasons])
|
||||
ax1.grid(True, axis="y", linestyle=":", alpha=0.5)
|
||||
|
||||
for rect, value in zip(bars, totals):
|
||||
height = rect.get_height()
|
||||
ax1.text(rect.get_x() + rect.get_width() / 2, height, f"{value:.0f}", ha="center", va="bottom", fontsize=8)
|
||||
|
||||
lines = []
|
||||
labels = []
|
||||
|
||||
if "rainy_hours" in rainfall_df.columns:
|
||||
ax2 = ax1.twinx()
|
||||
rainy_hours = rainfall_df["rainy_hours"].to_numpy(dtype=float)
|
||||
line = ax2.plot(
|
||||
x,
|
||||
rainy_hours,
|
||||
color="tab:red",
|
||||
marker="o",
|
||||
label="Heures pluvieuses",
|
||||
)[0]
|
||||
ax2.set_ylabel("Heures pluvieuses")
|
||||
lines.append(line)
|
||||
labels.append("Heures pluvieuses")
|
||||
|
||||
handles, lbls = ax1.get_legend_handles_labels()
|
||||
handles.extend(lines)
|
||||
lbls.extend(labels)
|
||||
if handles:
|
||||
ax1.legend(handles, lbls, loc="upper left")
|
||||
|
||||
ax1.set_title(title)
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
345
meteo/plots/relationships.py
Normal file
345
meteo/plots/relationships.py
Normal file
@@ -0,0 +1,345 @@
|
||||
"""Fonctions de tracé pour comparer directement deux ou trois variables."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Callable, Sequence
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import Normalize
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from meteo.variables import Variable
|
||||
|
||||
__all__ = ['plot_scatter_pair', 'plot_hexbin_with_third_variable', 'plot_event_composite']
|
||||
|
||||
|
||||
def plot_scatter_pair(
|
||||
df: pd.DataFrame,
|
||||
var_x: Variable,
|
||||
var_y: Variable,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
sample_step: int = 10,
|
||||
color_by_time: bool = True,
|
||||
cmap: str = "viridis",
|
||||
) -> Path:
|
||||
"""
|
||||
Trace un nuage de points (scatter) pour une paire de variables.
|
||||
|
||||
- On sous-échantillonne les données avec `sample_step` (par exemple,
|
||||
1 point sur 10) pour éviter un graphique illisible.
|
||||
- Si `color_by_time` vaut True et que l'index est temporel, les points
|
||||
sont colorés du plus ancien (sombre) au plus récent (clair).
|
||||
- Lorsque l'axe Y correspond à la direction du vent, on bascule sur
|
||||
un graphique polaire plus adapté (0° = Nord, sens horaire) avec
|
||||
un rayon normalisé : centre = valeur minimale, bord = maximale.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# On ne garde que les colonnes pertinentes et les lignes complètes
|
||||
df_pair = df[[var_x.column, var_y.column]].dropna()
|
||||
|
||||
if sample_step > 1:
|
||||
df_pair = df_pair.iloc[::sample_step, :]
|
||||
|
||||
export_plot_dataset(df_pair, output_path)
|
||||
|
||||
direction_var: Variable | None = None
|
||||
radial_var: Variable | None = None
|
||||
direction_series: pd.Series | None = None
|
||||
radial_series: pd.Series | None = None
|
||||
|
||||
if var_y.key == "wind_direction" and var_x.key != "wind_direction":
|
||||
direction_var = var_y
|
||||
direction_series = df_pair[var_y.column]
|
||||
radial_var = var_x
|
||||
radial_series = df_pair[var_x.column]
|
||||
elif var_x.key == "wind_direction" and var_y.key != "wind_direction":
|
||||
direction_var = var_x
|
||||
direction_series = df_pair[var_x.column]
|
||||
radial_var = var_y
|
||||
radial_series = df_pair[var_y.column]
|
||||
|
||||
use_polar = direction_var is not None and radial_var is not None
|
||||
|
||||
if use_polar:
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"})
|
||||
else:
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
scatter_kwargs: dict = {"s": 5, "alpha": 0.5}
|
||||
colorbar_meta: dict | None = None
|
||||
|
||||
if color_by_time and isinstance(df_pair.index, pd.DatetimeIndex):
|
||||
idx = df_pair.index
|
||||
timestamps = idx.view("int64")
|
||||
time_span = np.ptp(timestamps)
|
||||
norm = (
|
||||
Normalize(vmin=timestamps.min(), vmax=timestamps.max())
|
||||
if time_span > 0
|
||||
else None
|
||||
)
|
||||
scatter_kwargs |= {"c": timestamps, "cmap": cmap}
|
||||
if norm is not None:
|
||||
scatter_kwargs["norm"] = norm
|
||||
colorbar_meta = {
|
||||
"index": idx,
|
||||
"timestamps": timestamps,
|
||||
"time_span": time_span,
|
||||
}
|
||||
|
||||
if use_polar:
|
||||
assert direction_series is not None and radial_series is not None
|
||||
assert direction_var is not None and radial_var is not None
|
||||
|
||||
theta = np.deg2rad(direction_series.to_numpy(dtype=float) % 360.0)
|
||||
radius_raw = radial_series.to_numpy(dtype=float)
|
||||
|
||||
if radius_raw.size == 0:
|
||||
radius = radius_raw
|
||||
value_min = value_max = float("nan")
|
||||
else:
|
||||
value_min = float(np.min(radius_raw))
|
||||
value_max = float(np.max(radius_raw))
|
||||
if np.isclose(value_min, value_max):
|
||||
radius = np.zeros_like(radius_raw)
|
||||
else:
|
||||
radius = (radius_raw - value_min) / (value_max - value_min)
|
||||
|
||||
scatter = ax.scatter(theta, radius, **scatter_kwargs)
|
||||
|
||||
cardinal_angles = np.deg2rad(np.arange(0, 360, 45))
|
||||
cardinal_labels = ["N", "NE", "E", "SE", "S", "SO", "O", "NO"]
|
||||
ax.set_theta_zero_location("N")
|
||||
ax.set_theta_direction(-1)
|
||||
ax.set_xticks(cardinal_angles)
|
||||
ax.set_xticklabels(cardinal_labels)
|
||||
|
||||
if radius_raw.size > 0:
|
||||
if np.isclose(value_min, value_max):
|
||||
radial_positions = [0.0]
|
||||
else:
|
||||
radial_positions = np.linspace(0.0, 1.0, num=5).tolist()
|
||||
if np.isclose(value_min, value_max):
|
||||
actual_values = [value_min]
|
||||
else:
|
||||
actual_values = [
|
||||
value_min + pos * (value_max - value_min)
|
||||
for pos in radial_positions
|
||||
]
|
||||
ax.set_yticks(radial_positions)
|
||||
ax.set_yticklabels([f"{val:.1f}" for val in actual_values])
|
||||
ax.set_rlabel_position(225)
|
||||
ax.set_ylim(0.0, 1.0)
|
||||
|
||||
unit_suffix = f" {radial_var.unit}" if radial_var.unit else ""
|
||||
ax.text(
|
||||
0.5,
|
||||
-0.1,
|
||||
f"Centre = {value_min:.1f}{unit_suffix}, bord = {value_max:.1f}{unit_suffix}",
|
||||
transform=ax.transAxes,
|
||||
ha="center",
|
||||
va="top",
|
||||
fontsize=8,
|
||||
)
|
||||
|
||||
radial_label = f"{radial_var.label} ({radial_var.unit})" if radial_var.unit else radial_var.label
|
||||
ax.set_ylabel(radial_label, labelpad=20)
|
||||
else:
|
||||
scatter = ax.scatter(
|
||||
df_pair[var_x.column],
|
||||
df_pair[var_y.column],
|
||||
**scatter_kwargs,
|
||||
)
|
||||
|
||||
if colorbar_meta is not None:
|
||||
cbar = fig.colorbar(scatter, ax=ax)
|
||||
idx = colorbar_meta["index"]
|
||||
timestamps = colorbar_meta["timestamps"]
|
||||
time_span = colorbar_meta["time_span"]
|
||||
|
||||
def _format_tick_label(ts: pd.Timestamp) -> str:
|
||||
base = f"{ts.strftime('%Y-%m-%d')}\n{ts.strftime('%H:%M')}"
|
||||
tz_name = ts.tzname()
|
||||
return f"{base} ({tz_name})" if tz_name else base
|
||||
|
||||
if time_span > 0:
|
||||
tick_datetimes = pd.date_range(start=idx.min(), end=idx.max(), periods=5)
|
||||
tick_positions = tick_datetimes.view("int64")
|
||||
tick_labels = [_format_tick_label(ts) for ts in tick_datetimes]
|
||||
cbar.set_ticks(tick_positions)
|
||||
cbar.set_ticklabels(tick_labels)
|
||||
else:
|
||||
cbar.set_ticks([timestamps[0]])
|
||||
ts = idx[0]
|
||||
cbar.set_ticklabels([_format_tick_label(ts)])
|
||||
|
||||
cbar.set_label("Temps (ancien → récent)")
|
||||
|
||||
if use_polar:
|
||||
assert direction_var is not None and radial_var is not None
|
||||
ax.set_title(f"{radial_var.label} en fonction de {direction_var.label}")
|
||||
else:
|
||||
ax.set_xlabel(f"{var_x.label} ({var_x.unit})")
|
||||
ax.set_ylabel(f"{var_y.label} ({var_y.unit})")
|
||||
ax.set_title(f"{var_y.label} en fonction de {var_x.label}")
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_hexbin_with_third_variable(
|
||||
df: pd.DataFrame,
|
||||
var_x: Variable,
|
||||
var_y: Variable,
|
||||
var_color: Variable,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
gridsize: int = 60,
|
||||
mincnt: int = 5,
|
||||
reduce_func: Callable[[np.ndarray], float] | None = None,
|
||||
reduce_func_label: str | None = None,
|
||||
cmap: str = "viridis",
|
||||
) -> Path:
|
||||
"""
|
||||
Trace une carte de densité hexbin où la couleur encode une 3e variable.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
reduce_func = reduce_func or np.mean
|
||||
|
||||
df_xyz = df[[var_x.column, var_y.column, var_color.column]].dropna()
|
||||
export_plot_dataset(df_xyz, output_path)
|
||||
if df_xyz.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(
|
||||
0.5,
|
||||
0.5,
|
||||
"Pas de données valides pour cette combinaison.",
|
||||
ha="center",
|
||||
va="center",
|
||||
)
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
hb = ax.hexbin(
|
||||
df_xyz[var_x.column],
|
||||
df_xyz[var_y.column],
|
||||
C=df_xyz[var_color.column],
|
||||
reduce_C_function=reduce_func,
|
||||
gridsize=gridsize,
|
||||
cmap=cmap,
|
||||
mincnt=mincnt,
|
||||
)
|
||||
|
||||
func_label = reduce_func_label or getattr(reduce_func, "__name__", "statistique")
|
||||
colorbar_label = f"{func_label.capitalize()} de {var_color.label}"
|
||||
cbar = fig.colorbar(hb, ax=ax)
|
||||
cbar.set_label(colorbar_label)
|
||||
|
||||
ax.set_xlabel(f"{var_x.label} ({var_x.unit})")
|
||||
ax.set_ylabel(f"{var_y.label} ({var_y.unit})")
|
||||
ax.set_title(
|
||||
f"{var_y.label} vs {var_x.label}\nCouleur : {func_label} de {var_color.label}"
|
||||
)
|
||||
ax.grid(False)
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_event_composite(
|
||||
aligned_segments: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
quantiles: tuple[float, float] = (0.25, 0.75),
|
||||
baseline_label: str = "Début de l'événement",
|
||||
) -> Path:
|
||||
"""
|
||||
Trace les moyennes/médianes autour d'événements détectés avec éventail inter-quantiles.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if aligned_segments.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(
|
||||
0.5,
|
||||
0.5,
|
||||
"Aucun événement aligné à tracer.",
|
||||
ha="center",
|
||||
va="center",
|
||||
)
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
if "offset_minutes" not in aligned_segments.index.names:
|
||||
raise ValueError("aligned_segments doit avoir un niveau 'offset_minutes'.")
|
||||
|
||||
group = aligned_segments.groupby(level="offset_minutes")
|
||||
mean_df = group.mean()
|
||||
median_df = group.median()
|
||||
|
||||
q_low, q_high = quantiles
|
||||
quantile_low = group.quantile(q_low) if q_low is not None else None
|
||||
quantile_high = group.quantile(q_high) if q_high is not None else None
|
||||
|
||||
export_plot_dataset(
|
||||
{
|
||||
"mean": mean_df,
|
||||
"median": median_df,
|
||||
"quantile_low": quantile_low,
|
||||
"quantile_high": quantile_high,
|
||||
},
|
||||
output_path,
|
||||
)
|
||||
|
||||
offsets = mean_df.index.to_numpy(dtype=float)
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
col = var.column
|
||||
ax.axvline(0, color="black", linestyle="--", linewidth=1, label=baseline_label)
|
||||
ax.plot(offsets, mean_df[col], color="tab:blue", label="Moyenne")
|
||||
ax.plot(offsets, median_df[col], color="tab:orange", linestyle="--", label="Médiane")
|
||||
|
||||
if quantile_low is not None and quantile_high is not None:
|
||||
ax.fill_between(
|
||||
offsets,
|
||||
quantile_low[col],
|
||||
quantile_high[col],
|
||||
color="tab:blue",
|
||||
alpha=0.2,
|
||||
label=f"IQR {int(q_low*100)}–{int(q_high*100)}%",
|
||||
)
|
||||
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
|
||||
axes[-1].set_xlabel("Minutes autour de l'événement")
|
||||
axes[0].legend(loc="upper right")
|
||||
total_events = len(aligned_segments.index.get_level_values("event_id").unique())
|
||||
fig.suptitle(f"Composites autour d'événements ({total_events} occurrences)")
|
||||
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
return output_path.resolve()
|
||||
151
meteo/plots/seasonal_profiles.py
Normal file
151
meteo/plots/seasonal_profiles.py
Normal file
@@ -0,0 +1,151 @@
|
||||
"""Profils horaires/saisonniers liés à l'irradiance et aux cycles diurnes."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from meteo.analysis import DiurnalCycleStats
|
||||
from meteo.variables import Variable
|
||||
|
||||
__all__ = ['plot_diurnal_cycle', 'plot_seasonal_hourly_profiles', 'plot_daylight_hours']
|
||||
|
||||
|
||||
def plot_diurnal_cycle(
|
||||
stats: DiurnalCycleStats,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace les cycles diurnes moyens (moyenne/médiane + quantiles).
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
export_plot_dataset(
|
||||
{
|
||||
"mean": stats.mean,
|
||||
"median": stats.median,
|
||||
"quantile_low": stats.quantile_low,
|
||||
"quantile_high": stats.quantile_high,
|
||||
},
|
||||
output_path,
|
||||
)
|
||||
|
||||
hours = stats.mean.index.to_numpy(dtype=float)
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
col = var.column
|
||||
ax.plot(hours, stats.mean[col], label="Moyenne", color="tab:blue")
|
||||
ax.plot(hours, stats.median[col], label="Médiane", color="tab:orange", linestyle="--")
|
||||
if stats.quantile_low is not None and stats.quantile_high is not None:
|
||||
ax.fill_between(
|
||||
hours,
|
||||
stats.quantile_low[col],
|
||||
stats.quantile_high[col],
|
||||
color="tab:blue",
|
||||
alpha=0.15,
|
||||
label=(
|
||||
f"Quantiles {int(stats.quantile_low_level * 100)}–{int(stats.quantile_high_level * 100)}%"
|
||||
if stats.quantile_low_level is not None and stats.quantile_high_level is not None
|
||||
else "Quantiles"
|
||||
),
|
||||
)
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
|
||||
axes[-1].set_xlabel("Heure locale")
|
||||
axes[0].legend(loc="upper right")
|
||||
axes[-1].set_xticks(range(0, 24, 2))
|
||||
axes[-1].set_xlim(0, 23)
|
||||
fig.suptitle("Cycle diurne moyen")
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_seasonal_hourly_profiles(
|
||||
profile_df: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str,
|
||||
ylabel: str,
|
||||
) -> Path:
|
||||
"""
|
||||
Courbes moyennes par heure pour chaque saison.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if profile_df.empty or profile_df.isna().all().all():
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de profil saisonnier disponible.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(profile_df, output_path)
|
||||
|
||||
hours = profile_df.index.to_numpy(dtype=float)
|
||||
fig, ax = plt.subplots(figsize=(10, 4))
|
||||
colors = plt.get_cmap("turbo")(np.linspace(0.1, 0.9, profile_df.shape[1]))
|
||||
for color, season in zip(colors, profile_df.columns):
|
||||
ax.plot(hours, profile_df[season], label=season.capitalize(), color=color)
|
||||
|
||||
ax.set_xlabel("Heure locale")
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.set_title(title)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
ax.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_daylight_hours(
|
||||
monthly_series: pd.Series,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str = "Durée moyenne de luminosité (> seuil)",
|
||||
) -> Path:
|
||||
"""
|
||||
Représente la durée moyenne quotidienne de luminosité par mois.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if monthly_series.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données sur la luminosité.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(monthly_series, output_path)
|
||||
|
||||
months = monthly_series.index
|
||||
fig, ax = plt.subplots(figsize=(10, 4))
|
||||
ax.bar(months, monthly_series.values, color="goldenrod", alpha=0.8)
|
||||
ax.set_ylabel("Heures de luminosité par jour")
|
||||
ax.set_xlabel("Mois")
|
||||
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
|
||||
ax.xaxis.set_major_formatter(mdates.ConciseDateFormatter(ax.xaxis.get_major_locator()))
|
||||
ax.set_title(title)
|
||||
ax.grid(True, axis="y", linestyle=":", alpha=0.5)
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
351
meteo/plots/seasonal_stats.py
Normal file
351
meteo/plots/seasonal_stats.py
Normal file
@@ -0,0 +1,351 @@
|
||||
"""Visualisations statistiques agrégées par saison, mois ou intervalles spécialisés."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import calendar
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from meteo.analysis import BinnedStatistics, MONTH_ORDER
|
||||
from meteo.season import SEASON_LABELS
|
||||
from meteo.variables import Variable
|
||||
|
||||
__all__ = ['plot_seasonal_boxplots', 'plot_monthly_boxplots', 'plot_binned_profiles', 'plot_monthly_anomalies']
|
||||
|
||||
|
||||
def plot_seasonal_boxplots(
|
||||
df: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
season_column: str = "season",
|
||||
season_order: Sequence[str] | None = None,
|
||||
title: str | None = None,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace des boxplots par saison pour une sélection de variables.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if season_column not in df.columns:
|
||||
raise KeyError(f"Colonne saison absente : {season_column}")
|
||||
|
||||
available = df[season_column].dropna().unique()
|
||||
if season_order is None:
|
||||
season_order = [season for season in SEASON_LABELS if season in available]
|
||||
else:
|
||||
season_order = [season for season in season_order if season in available]
|
||||
|
||||
if not season_order:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Aucune donnée saisonnière disponible.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
dataset_columns = [season_column] + [var.column for var in variables]
|
||||
export_plot_dataset(df[dataset_columns], output_path)
|
||||
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
colors = plt.get_cmap("Set3")(np.linspace(0.2, 0.8, len(season_order)))
|
||||
labels = [season.capitalize() for season in season_order]
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
data = [
|
||||
df.loc[df[season_column] == season, var.column].dropna().to_numpy()
|
||||
for season in season_order
|
||||
]
|
||||
if not any(len(arr) > 0 for arr in data):
|
||||
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
continue
|
||||
|
||||
box = ax.boxplot(
|
||||
data,
|
||||
labels=labels,
|
||||
showfliers=False,
|
||||
patch_artist=True,
|
||||
)
|
||||
for patch, color in zip(box["boxes"], colors):
|
||||
patch.set_facecolor(color)
|
||||
patch.set_alpha(0.7)
|
||||
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
|
||||
axes[-1].set_xlabel("Saison")
|
||||
if title:
|
||||
fig.suptitle(title)
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.95])
|
||||
else:
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_monthly_boxplots(
|
||||
df: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
) -> Path:
|
||||
"""
|
||||
Boxplots par mois (janvier → décembre) pour plusieurs variables.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if not isinstance(df.index, pd.DatetimeIndex):
|
||||
raise TypeError("plot_monthly_boxplots nécessite un DatetimeIndex.")
|
||||
|
||||
value_columns = [var.column for var in variables]
|
||||
dataset = df[value_columns].copy()
|
||||
dataset.insert(0, "month", df.index.month)
|
||||
export_plot_dataset(dataset, output_path)
|
||||
|
||||
month_labels = [calendar.month_abbr[m].capitalize() for m in MONTH_ORDER]
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(12, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
data = [
|
||||
df.loc[df.index.month == month, var.column].dropna().to_numpy()
|
||||
for month in MONTH_ORDER
|
||||
]
|
||||
|
||||
if not any(len(arr) > 0 for arr in data):
|
||||
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
continue
|
||||
|
||||
box = ax.boxplot(
|
||||
data,
|
||||
labels=month_labels,
|
||||
showfliers=False,
|
||||
patch_artist=True,
|
||||
)
|
||||
colors = plt.get_cmap("Spectral")(np.linspace(0.2, 0.8, len(data)))
|
||||
for patch, color in zip(box["boxes"], colors):
|
||||
patch.set_facecolor(color)
|
||||
patch.set_alpha(0.7)
|
||||
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
|
||||
axes[-1].set_xlabel("Mois")
|
||||
fig.suptitle("Distribution mensuelle")
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_binned_profiles(
|
||||
stats: BinnedStatistics,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
xlabel: str,
|
||||
title: str,
|
||||
show_counts: bool = False,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace les statistiques agrégées d'une ou plusieurs variables en fonction de bins.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if stats.centers.size == 0:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(
|
||||
0.5,
|
||||
0.5,
|
||||
"Aucune donnée suffisante pour ces intervalles.",
|
||||
ha="center",
|
||||
va="center",
|
||||
)
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
bin_summary = pd.DataFrame(
|
||||
{
|
||||
"bin_left": stats.intervals.left,
|
||||
"bin_right": stats.intervals.right,
|
||||
"center": stats.centers,
|
||||
}
|
||||
)
|
||||
export_plot_dataset(
|
||||
{
|
||||
"bins": bin_summary,
|
||||
"counts": stats.counts,
|
||||
"mean": stats.mean,
|
||||
"median": stats.median,
|
||||
"quantile_low": stats.quantile_low,
|
||||
"quantile_high": stats.quantile_high,
|
||||
},
|
||||
output_path,
|
||||
)
|
||||
|
||||
base_axes = len(variables)
|
||||
total_axes = base_axes + (1 if show_counts else 0)
|
||||
fig, axes = plt.subplots(
|
||||
total_axes,
|
||||
1,
|
||||
sharex=True,
|
||||
figsize=(10, 3 * total_axes),
|
||||
)
|
||||
|
||||
if total_axes == 1:
|
||||
axes = [axes]
|
||||
else:
|
||||
axes = list(axes)
|
||||
|
||||
x_values = stats.centers
|
||||
bin_widths = np.array([interval.length for interval in stats.intervals])
|
||||
|
||||
if show_counts:
|
||||
count_ax = axes.pop(0)
|
||||
count_ax.bar(
|
||||
x_values,
|
||||
stats.counts.to_numpy(dtype=float),
|
||||
width=bin_widths,
|
||||
color="lightgray",
|
||||
edgecolor="gray",
|
||||
align="center",
|
||||
)
|
||||
count_ax.set_ylabel("Nombre de points")
|
||||
count_ax.grid(True, linestyle=":", alpha=0.4)
|
||||
count_ax.set_title("Densité des observations par bin")
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
col = var.column
|
||||
ax.plot(x_values, stats.mean[col], color="tab:blue", label="Moyenne")
|
||||
ax.plot(x_values, stats.median[col], color="tab:orange", linestyle="--", label="Médiane")
|
||||
|
||||
if stats.quantile_low is not None and stats.quantile_high is not None:
|
||||
ax.fill_between(
|
||||
x_values,
|
||||
stats.quantile_low[col],
|
||||
stats.quantile_high[col],
|
||||
color="tab:blue",
|
||||
alpha=0.15,
|
||||
label=(
|
||||
f"Quantiles {int(stats.quantile_low_level * 100)}–{int(stats.quantile_high_level * 100)}%"
|
||||
if stats.quantile_low_level is not None and stats.quantile_high_level is not None
|
||||
else "Quantiles"
|
||||
),
|
||||
)
|
||||
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
|
||||
axes[-1].set_xlabel(xlabel)
|
||||
axes[0].legend(loc="upper right")
|
||||
axes[-1].set_xlim(stats.intervals.left.min(), stats.intervals.right.max())
|
||||
|
||||
fig.suptitle(title)
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_monthly_anomalies(
|
||||
monthly_means: pd.DataFrame,
|
||||
climatology: pd.DataFrame,
|
||||
variables: Sequence[Variable],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str = "Moyennes mensuelles vs climatologie",
|
||||
) -> Path:
|
||||
"""
|
||||
Compare les moyennes mensuelles observées à la climatologie pour plusieurs variables.
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if monthly_means.empty or climatology.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données mensuelles disponibles.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_frames: list[pd.DataFrame] = []
|
||||
|
||||
n_vars = len(variables)
|
||||
fig, axes = plt.subplots(n_vars, 1, figsize=(12, 3 * n_vars), sharex=True)
|
||||
if n_vars == 1:
|
||||
axes = [axes]
|
||||
|
||||
locator = mdates.AutoDateLocator()
|
||||
formatter = mdates.ConciseDateFormatter(locator)
|
||||
|
||||
for ax, var in zip(axes, variables):
|
||||
actual = monthly_means[var.column].dropna()
|
||||
if actual.empty:
|
||||
ax.text(0.5, 0.5, f"Aucune donnée pour {var.label}.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
continue
|
||||
|
||||
months = actual.index.month
|
||||
clim = climatology.loc[months, var.column].to_numpy(dtype=float)
|
||||
anomaly = actual.to_numpy(dtype=float) - clim
|
||||
|
||||
clim_series = pd.Series(clim, index=actual.index, name="climatology")
|
||||
frame = pd.DataFrame({"actual": actual, "climatology": clim_series})
|
||||
frame["anomaly"] = frame["actual"] - frame["climatology"]
|
||||
export_frames.append(pd.concat({var.column: frame}, axis=1))
|
||||
|
||||
ax.plot(actual.index, actual, color="tab:blue", label="Moyenne mensuelle")
|
||||
ax.plot(actual.index, clim, color="tab:gray", linestyle="--", label="Climatologie")
|
||||
ax.fill_between(
|
||||
actual.index,
|
||||
actual,
|
||||
clim,
|
||||
where=anomaly >= 0,
|
||||
color="tab:blue",
|
||||
alpha=0.15,
|
||||
)
|
||||
ax.fill_between(
|
||||
actual.index,
|
||||
actual,
|
||||
clim,
|
||||
where=anomaly < 0,
|
||||
color="tab:red",
|
||||
alpha=0.15,
|
||||
)
|
||||
|
||||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||||
ax.set_ylabel(ylabel)
|
||||
ax.grid(True, linestyle=":", alpha=0.5)
|
||||
ax.xaxis.set_major_locator(locator)
|
||||
ax.xaxis.set_major_formatter(formatter)
|
||||
|
||||
if export_frames:
|
||||
export_plot_dataset(pd.concat(export_frames, axis=1), output_path)
|
||||
|
||||
axes[-1].set_xlabel("Date")
|
||||
axes[0].legend(loc="upper right")
|
||||
fig.suptitle(title)
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
145
meteo/plots/wind.py
Normal file
145
meteo/plots/wind.py
Normal file
@@ -0,0 +1,145 @@
|
||||
"""Tracés dédiés aux analyses du vent (roses et vecteurs agrégés)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import FuncFormatter
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from .base import export_plot_dataset
|
||||
|
||||
__all__ = ['plot_wind_rose', 'plot_wind_vector_series']
|
||||
|
||||
|
||||
def plot_wind_rose(
|
||||
frequencies: pd.DataFrame,
|
||||
speed_bin_labels: Sequence[str],
|
||||
output_path: str | Path,
|
||||
*,
|
||||
sector_size_deg: float,
|
||||
cmap: str = "viridis",
|
||||
) -> Path:
|
||||
"""
|
||||
Trace une rose des vents empilée par classes de vitesses (en % du temps).
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if frequencies.empty:
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"})
|
||||
ax.text(0.5, 0.5, "Données de vent insuffisantes.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
dataset = frequencies.copy()
|
||||
dataset.insert(0, "sector_start_deg", frequencies.index)
|
||||
dataset.insert(1, "sector_center_deg", frequencies.index + sector_size_deg / 2.0)
|
||||
export_plot_dataset(dataset, output_path)
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6))
|
||||
cmap_obj = plt.get_cmap(cmap, len(speed_bin_labels))
|
||||
colors = cmap_obj(np.linspace(0.2, 0.95, len(speed_bin_labels)))
|
||||
|
||||
angles = np.deg2rad(frequencies.index.to_numpy(dtype=float) + sector_size_deg / 2.0)
|
||||
width = np.deg2rad(sector_size_deg)
|
||||
bottom = np.zeros_like(angles, dtype=float)
|
||||
|
||||
for label, color in zip(speed_bin_labels, colors):
|
||||
values = frequencies[label].to_numpy(dtype=float)
|
||||
bars = ax.bar(
|
||||
angles,
|
||||
values,
|
||||
width=width,
|
||||
bottom=bottom,
|
||||
color=color,
|
||||
edgecolor="white",
|
||||
linewidth=0.5,
|
||||
align="center",
|
||||
)
|
||||
bottom += values
|
||||
|
||||
ax.set_theta_zero_location("N")
|
||||
ax.set_theta_direction(-1)
|
||||
ax.set_xticks(np.deg2rad(np.arange(0, 360, 45)))
|
||||
ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SO", "O", "NO"])
|
||||
max_radius = np.max(bottom)
|
||||
ax.set_ylim(0, max(max_radius * 1.1, 1))
|
||||
ax.yaxis.set_major_formatter(FuncFormatter(lambda val, _pos: f"{val:.0f}%"))
|
||||
ax.set_title("Rose des vents (fréquence en %)")
|
||||
legend_handles = [
|
||||
plt.Line2D([0], [0], color=color, linewidth=6, label=label) for label, color in zip(speed_bin_labels, colors)
|
||||
]
|
||||
ax.legend(
|
||||
handles=legend_handles,
|
||||
loc="lower center",
|
||||
bbox_to_anchor=(0.5, -0.15),
|
||||
ncol=2,
|
||||
title="Vitesses (km/h)",
|
||||
)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
def plot_wind_vector_series(
|
||||
vector_df: pd.DataFrame,
|
||||
output_path: str | Path,
|
||||
*,
|
||||
title: str = "Vecteurs moyens du vent",
|
||||
) -> Path:
|
||||
"""
|
||||
Représente les composantes moyennes du vent sous forme de flèches (u/v).
|
||||
"""
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if vector_df.empty:
|
||||
fig, ax = plt.subplots()
|
||||
ax.text(0.5, 0.5, "Pas de données de vent.", ha="center", va="center")
|
||||
ax.set_axis_off()
|
||||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
|
||||
export_plot_dataset(vector_df, output_path)
|
||||
|
||||
times = vector_df.index
|
||||
x = mdates.date2num(times)
|
||||
u = vector_df["u"].to_numpy(dtype=float)
|
||||
v = vector_df["v"].to_numpy(dtype=float)
|
||||
speed = vector_df["speed"].to_numpy(dtype=float)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 4))
|
||||
q = ax.quiver(
|
||||
x,
|
||||
np.zeros_like(x),
|
||||
u,
|
||||
v,
|
||||
speed,
|
||||
angles="xy",
|
||||
scale_units="xy",
|
||||
scale=1,
|
||||
cmap="viridis",
|
||||
)
|
||||
ax.axhline(0, color="black", linewidth=0.5)
|
||||
ax.set_ylim(-max(abs(v)) * 1.2 if np.any(v) else -1, max(abs(v)) * 1.2 if np.any(v) else 1)
|
||||
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
|
||||
ax.xaxis.set_major_formatter(mdates.ConciseDateFormatter(ax.xaxis.get_major_locator()))
|
||||
ax.set_ylabel("Composante nord (v)")
|
||||
ax.set_xlabel("Date")
|
||||
ax.set_title(title)
|
||||
cbar = fig.colorbar(q, ax=ax)
|
||||
cbar.set_label("Vitesse moyenne (km/h)")
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
return output_path.resolve()
|
||||
Reference in New Issue
Block a user