1

Ajout des matrices de corrélation + Refactoring

This commit is contained in:
2025-11-19 23:31:38 +01:00
parent 3a1f7e2a7e
commit a4d3ce7b49
13 changed files with 165 additions and 26 deletions

View File

@@ -6,9 +6,11 @@ from .core import BinnedStatistics, DiurnalCycleStats, MONTH_ORDER
from .correlations import (
compute_correlation_matrix,
compute_correlation_matrix_for_variables,
compute_correlation_matrices_for_methods,
compute_lagged_correlation,
compute_rolling_correlation_series,
compute_rolling_correlations_for_pairs,
transform_correlation_matrix,
)
from .events import build_event_aligned_segments, detect_threshold_events
from .filters import filter_by_condition
@@ -28,9 +30,11 @@ __all__ = [
"MONTH_ORDER",
"compute_correlation_matrix",
"compute_correlation_matrix_for_variables",
"compute_correlation_matrices_for_methods",
"compute_lagged_correlation",
"compute_rolling_correlation_series",
"compute_rolling_correlations_for_pairs",
"transform_correlation_matrix",
"build_event_aligned_segments",
"detect_threshold_events",
"filter_by_condition",

View File

@@ -2,7 +2,7 @@
from __future__ import annotations
from typing import Literal, Sequence
from typing import Callable, Literal, Sequence
import numpy as np
import pandas as pd
@@ -11,13 +11,16 @@ from meteo.variables import Variable
from .core import _ensure_datetime_index
__all__ = ['compute_correlation_matrix', 'compute_correlation_matrix_for_variables', 'compute_lagged_correlation', 'compute_rolling_correlation_series', 'compute_rolling_correlations_for_pairs']
__all__ = ['compute_correlation_matrix', 'compute_correlation_matrix_for_variables', 'compute_correlation_matrices_for_methods', 'compute_lagged_correlation', 'compute_rolling_correlation_series', 'compute_rolling_correlations_for_pairs', 'transform_correlation_matrix']
CorrelationMethod = Literal["pearson", "spearman", "kendall"]
CorrelationTransform = Literal["identity", "absolute", "square"]
def compute_correlation_matrix(
df: pd.DataFrame,
*,
method: Literal["pearson", "spearman"] = "pearson",
method: CorrelationMethod = "pearson",
) -> pd.DataFrame:
"""
Calcule la matrice de corrélation entre toutes les colonnes numériques
@@ -36,7 +39,7 @@ def compute_correlation_matrix_for_variables(
df: pd.DataFrame,
variables: Sequence[Variable],
*,
method: Literal["pearson", "spearman"] = "pearson",
method: CorrelationMethod = "pearson",
) -> pd.DataFrame:
"""
Calcule la matrice de corrélation pour un sous-ensemble de variables,
@@ -70,6 +73,46 @@ def compute_correlation_matrix_for_variables(
corr = corr.loc[columns, columns]
return corr
def transform_correlation_matrix(
corr: pd.DataFrame,
*,
transform: CorrelationTransform | Callable[[pd.DataFrame], pd.DataFrame] = "identity",
) -> pd.DataFrame:
"""Applique une transformation générique sur une matrice de corrélation."""
if callable(transform):
return transform(corr)
if transform == "identity":
return corr
if transform == "absolute":
return corr.abs()
if transform == "square":
return corr.pow(2)
raise ValueError(f"Transformation de corrélation inconnue : {transform!r}")
def compute_correlation_matrices_for_methods(
df: pd.DataFrame,
variables: Sequence[Variable],
*,
methods: Sequence[CorrelationMethod],
transform: CorrelationTransform | Callable[[pd.DataFrame], pd.DataFrame] = "identity",
) -> dict[str, pd.DataFrame]:
"""Calcule plusieurs matrices de corrélation en une seule passe."""
if not methods:
raise ValueError("La liste des méthodes de corrélation est vide.")
matrices: dict[str, pd.DataFrame] = {}
for method in methods:
corr = compute_correlation_matrix_for_variables(df, variables, method=method)
matrices[method] = transform_correlation_matrix(corr, transform=transform)
return matrices
def compute_lagged_correlation(
df: pd.DataFrame,
var_x: Variable,

View File

@@ -48,6 +48,11 @@ def plot_correlation_heatmap(
output_path: str | Path,
*,
annotate: bool = True,
title: str | None = None,
cmap: str | None = None,
vmin: float | None = None,
vmax: float | None = None,
colorbar_label: str | None = None,
) -> Path:
"""
Trace une heatmap de la matrice de corrélation.
@@ -63,6 +68,14 @@ def plot_correlation_heatmap(
Chemin du fichier image à écrire.
annotate :
Si True, affiche la valeur numérique dans chaque case.
title :
Titre personalisé (par défaut, libellé générique).
cmap :
Nom de la palette matplotlib à utiliser (par défaut, palette standard).
vmin / vmax :
Borne d'échelle de couleurs. Si None, valeurs classiques [-1, 1].
colorbar_label :
Libellé pour la barre de couleur (par défaut "Corrélation").
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
@@ -77,7 +90,16 @@ def plot_correlation_heatmap(
data = corr.to_numpy()
fig, ax = plt.subplots()
im = ax.imshow(data, vmin=-1.0, vmax=1.0)
if vmin is None:
vmin = -1.0
if vmax is None:
vmax = 1.0
im_kwargs = {"vmin": vmin, "vmax": vmax}
if cmap is not None:
im_kwargs["cmap"] = cmap
im = ax.imshow(data, **im_kwargs)
# Ticks et labels
ax.set_xticks(np.arange(len(labels)))
@@ -86,31 +108,45 @@ def plot_correlation_heatmap(
ax.set_yticklabels(labels)
# Axe en haut/bas selon préférence (ici on laisse en bas)
ax.set_title("Matrice de corrélation (coef. de Pearson)")
ax.set_title(title or "Matrice de corrélation")
# Barre de couleur
cbar = plt.colorbar(im, ax=ax)
cbar.set_label("Corrélation")
cbar.set_label(colorbar_label or "Corrélation")
# Annotation des cases
if annotate:
n = data.shape[0]
norm = im.norm
cmap_obj = im.cmap
def _text_color(value: float) -> str:
rgba = cmap_obj(norm(value))
r, g, b, _ = rgba
luminance = 0.2126 * r + 0.7152 * g + 0.0722 * b
return "white" if luminance < 0.5 else "black"
for i in range(n):
for j in range(n):
val = data[i, j]
if i == j:
text = ""
elif np.isnan(val):
text = ""
else:
val = data[i, j]
if np.isnan(val):
text = ""
else:
text = f"{val:.2f}"
text = f"{val:.2f}"
if not text:
continue
color = _text_color(0.0 if np.isnan(val) else val)
ax.text(
j,
i,
text,
ha="center",
va="center",
color=color,
)
plt.tight_layout()