1

Amélioration des vues basiques

This commit is contained in:
2025-11-20 21:12:02 +01:00
parent 8979f48c23
commit df7fbf07ed
12 changed files with 332 additions and 51 deletions

View File

@@ -1,5 +1,5 @@
# scripts/plot_basic_variables.py
"""Génère des séries temporelles simples (7 jours) pour chaque variable météo."""
"""Génère des séries temporelles simples pour chaque variable météo."""
from __future__ import annotations
@@ -7,7 +7,6 @@ import argparse
from pathlib import Path
import sys
import matplotlib.pyplot as plt
import pandas as pd
@@ -16,7 +15,7 @@ if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from meteo.dataset import load_raw_csv
from meteo.plots import export_plot_dataset
from meteo.plots import PlotChoice, PlotStyle, plot_basic_series, recommended_style, resample_series_for_plot
from meteo.variables import Variable, VARIABLES
@@ -25,47 +24,32 @@ DOC_DIR = Path(__file__).resolve().parent.parent
DEFAULT_OUTPUT_DIR = DOC_DIR / "figures"
def _prepare_slice(df: pd.DataFrame, *, last_days: int) -> pd.DataFrame:
"""Extrait la fenêtre temporelle souhaitée et applique une moyenne horaire pour lisser la courbe."""
def _select_window(df: pd.DataFrame, *, last_days: int | None) -> pd.DataFrame:
"""Extrait la fenêtre temporelle souhaitée (ou la totalité si None)."""
if last_days is None:
return df
end = df.index.max()
start = end - pd.Timedelta(days=last_days)
df_slice = df.loc[start:end]
numeric_slice = df_slice.select_dtypes(include="number")
if numeric_slice.empty:
raise RuntimeError("Aucune colonne numérique disponible pour les moyennes horaires.")
return numeric_slice.resample("1h").mean()
return df.loc[start:end]
def _plot_variable(df_hourly: pd.DataFrame, var: Variable, output_dir: Path) -> Path | None:
"""Trace la série pour une variable et retourne le chemin de l'image générée."""
if var.column not in df_hourly.columns:
print(f"⚠ Colonne absente pour {var.key} ({var.column}).")
return None
series = df_hourly[var.column].dropna()
if series.empty:
print(f"⚠ Aucun point valide pour {var.key} dans l'intervalle choisi.")
return None
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / f"{var.key}_last_7_days.png"
export_plot_dataset(series.to_frame(name=var.column), output_path)
plt.figure()
plt.plot(series.index, series)
plt.xlabel("Temps (UTC)")
def _format_ylabel(var: Variable) -> str:
unit_text = f" ({var.unit})" if var.unit else ""
plt.ylabel(f"{var.label}{unit_text}")
plt.title(f"{var.label} - Moyenne horaire sur les 7 derniers jours")
plt.grid(True)
plt.tight_layout()
plt.savefig(output_path, dpi=150)
plt.close()
print(f"✔ Graphique généré : {output_path}")
return output_path
return f"{var.label}{unit_text}"
def _aggregation_label(choice: PlotChoice, freq: str) -> str:
"""Texte court pour indiquer l'agrégation appliquée."""
base = "moyenne"
if callable(choice.agg) and getattr(choice.agg, "__name__", "") == "_circular_mean_deg":
base = "moyenne circulaire"
elif choice.agg == "sum":
base = "somme"
elif choice.agg == "median":
base = "médiane"
return f"{base} {freq}"
def main(argv: list[str] | None = None) -> None:
@@ -78,8 +62,23 @@ def main(argv: list[str] | None = None) -> None:
parser.add_argument(
"--days",
type=int,
default=7,
help="Nombre de jours à afficher (par défaut : 7).",
default=None,
help="Nombre de jours à afficher (par défaut : toute la période disponible).",
)
parser.add_argument(
"--style",
choices=[style.value for style in PlotStyle],
help="Style de représentation à utiliser pour toutes les variables (par défaut : recommandations par variable).",
)
parser.add_argument(
"--resample",
help="Fréquence pandas à utiliser pour l'agrégation temporelle (par défaut : calcul automatique).",
)
parser.add_argument(
"--max-points",
type=int,
default=420,
help="Nombre de points cible après agrégation automatique (par défaut : 420).",
)
parser.add_argument(
"--output-dir",
@@ -93,7 +92,7 @@ def main(argv: list[str] | None = None) -> None:
raise FileNotFoundError(f"Dataset introuvable : {CSV_PATH}")
df = load_raw_csv(CSV_PATH)
df_hourly = _prepare_slice(df, last_days=args.days)
df_window = _select_window(df, last_days=args.days)
selected: list[Variable]
if args.only:
@@ -105,8 +104,44 @@ def main(argv: list[str] | None = None) -> None:
else:
selected = list(VARIABLES)
output_dir: Path = args.output_dir
output_dir.mkdir(parents=True, exist_ok=True)
for variable in selected:
_plot_variable(df_hourly, variable, args.output_dir)
if variable.column not in df_window.columns:
print(f"⚠ Colonne absente pour {variable.key} ({variable.column}).")
continue
series = df_window[variable.column].dropna()
if series.empty:
print(f"⚠ Aucun point valide pour {variable.key} sur la période choisie.")
continue
style_choice = recommended_style(variable, args.style)
aggregated, freq_used = resample_series_for_plot(
series,
variable=variable,
freq=args.resample,
target_points=args.max_points,
)
if aggregated.empty:
print(f"⚠ Pas de points après agrégation pour {variable.key}.")
continue
output_path = output_dir / f"{variable.key}_overview.png"
annotate_freq = _aggregation_label(style_choice, freq_used)
plot_basic_series(
aggregated,
variable=variable,
output_path=output_path,
style=style_choice.style,
title=f"{variable.label} — évolution temporelle",
ylabel=_format_ylabel(variable),
annotate_freq=annotate_freq,
)
print(f"✔ Graphique généré : {output_path}")
if __name__ == "__main__":