Compare commits
2 Commits
79603b7c3e
...
3a1f7e2a7e
| Author | SHA1 | Date | |
|---|---|---|---|
| 3a1f7e2a7e | |||
| 6a78dbb50d |
Binary file not shown.
|
After Width: | Height: | Size: 46 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 49 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 45 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 46 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 45 KiB |
@ -4,16 +4,18 @@ On peut désormais tracer nos premiers graphiques simples et bruts.
|
||||
S'ils ne sont pas très instructifs par rapport à ce que nous fournissent Home Assistant et InfluxDB, ils nous permettent au moins de nous assurer que tout fonctionne, et que les données semblent cohérentes.
|
||||
Les fichiers CSV correspondant à chaque figure sont conservés dans `data/` dans ce dossier.
|
||||
|
||||
On se limite dans un premier temps aux 7 derniers jours.
|
||||
|
||||
```shell
|
||||
python "docs/03 - Premiers graphiques/scripts/plot_basic_variables.py"
|
||||
```
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
@ -23,3 +25,26 @@ python "docs/03 - Premiers graphiques/scripts/plot_basic_variables.py"
|
||||

|
||||
|
||||

|
||||
|
||||
## Vues calendrier
|
||||
|
||||
Les vues calendrier permettent de visualiser, jour par jour, les cumuls ou moyennes quotidiennes sur la dernière année complète disponible.
|
||||
Les images générées sont stockées dans `figures/calendar/` et les CSV correspondants dans `data/calendar/`.
|
||||
|
||||
```shell
|
||||
python "docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py"
|
||||
```
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
Ces vues, bien que simples en principe, mettent déjà mieux en évidence les fluctuations au cours du temps.
|
||||
|
||||
121
docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py
Normal file
121
docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py
Normal file
@ -0,0 +1,121 @@
|
||||
# docs/03 - Premiers graphiques/scripts/plot_calendar_overview.py
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
|
||||
PROJECT_ROOT = Path(__file__).resolve().parents[3]
|
||||
if str(PROJECT_ROOT) not in sys.path:
|
||||
sys.path.insert(0, str(PROJECT_ROOT))
|
||||
|
||||
from meteo.dataset import load_raw_csv
|
||||
from meteo.plots import (
|
||||
CalendarHeatmapSpec,
|
||||
daily_mean_series,
|
||||
generate_calendar_heatmaps,
|
||||
rainfall_daily_total_series,
|
||||
)
|
||||
|
||||
|
||||
DOC_DIR = Path(__file__).resolve().parent.parent
|
||||
CSV_PATH = PROJECT_ROOT / "data" / "weather_minutely.csv"
|
||||
OUTPUT_DIR = DOC_DIR / "figures" / "calendar"
|
||||
|
||||
HEATMAP_SPECS: tuple[CalendarHeatmapSpec, ...] = (
|
||||
CalendarHeatmapSpec(
|
||||
key="rain",
|
||||
agg_label="Pluie (mm)",
|
||||
title_template="Pluie quotidienne - {year}",
|
||||
cmap="Blues",
|
||||
colorbar_label="mm",
|
||||
aggregator=rainfall_daily_total_series,
|
||||
),
|
||||
CalendarHeatmapSpec(
|
||||
key="temperature",
|
||||
agg_label="Température (°C)",
|
||||
title_template="Température moyenne quotidienne - {year}",
|
||||
cmap="coolwarm",
|
||||
colorbar_label="°C",
|
||||
aggregator=daily_mean_series("temperature"),
|
||||
),
|
||||
CalendarHeatmapSpec(
|
||||
key="humidity",
|
||||
agg_label="Humidité relative (%)",
|
||||
title_template="Humidité relative quotidienne - {year}",
|
||||
cmap="PuBu",
|
||||
colorbar_label="%",
|
||||
aggregator=daily_mean_series("humidity"),
|
||||
),
|
||||
CalendarHeatmapSpec(
|
||||
key="pressure",
|
||||
agg_label="Pression (hPa)",
|
||||
title_template="Pression moyenne quotidienne - {year}",
|
||||
cmap="Greens",
|
||||
colorbar_label="hPa",
|
||||
aggregator=daily_mean_series("pressure"),
|
||||
),
|
||||
CalendarHeatmapSpec(
|
||||
key="illuminance",
|
||||
agg_label="Illuminance (lux)",
|
||||
title_template="Illuminance moyenne quotidienne - {year}",
|
||||
cmap="YlOrBr",
|
||||
colorbar_label="lux",
|
||||
aggregator=daily_mean_series("illuminance"),
|
||||
),
|
||||
CalendarHeatmapSpec(
|
||||
key="wind",
|
||||
agg_label="Vent (km/h)",
|
||||
title_template="Vitesse moyenne du vent - {year}",
|
||||
cmap="Purples",
|
||||
colorbar_label="km/h",
|
||||
aggregator=daily_mean_series("wind_speed"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
if not CSV_PATH.exists():
|
||||
print(f"⚠ Fichier introuvable : {CSV_PATH}")
|
||||
return
|
||||
|
||||
df = load_raw_csv(CSV_PATH)
|
||||
if df.empty:
|
||||
print("⚠ Dataset vide.")
|
||||
return
|
||||
|
||||
if not isinstance(df.index, pd.DatetimeIndex):
|
||||
print("⚠ Le dataset doit avoir un index temporel.")
|
||||
return
|
||||
|
||||
print(f"Dataset minuté chargé : {CSV_PATH}")
|
||||
print(f" Lignes : {len(df)}")
|
||||
print(f" Colonnes : {list(df.columns)}")
|
||||
print()
|
||||
|
||||
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
latest_year = df.index.year.max()
|
||||
print(f"Année retenue pour le calendrier : {latest_year}")
|
||||
|
||||
results = generate_calendar_heatmaps(
|
||||
df=df,
|
||||
specs=HEATMAP_SPECS,
|
||||
year=latest_year,
|
||||
output_dir=OUTPUT_DIR,
|
||||
)
|
||||
|
||||
for result in results:
|
||||
title = result.spec.title_template.format(year=latest_year)
|
||||
if result.output_path:
|
||||
print(f"✔ {title} : {result.output_path}")
|
||||
else:
|
||||
reason = f" ({result.reason})" if result.reason else ""
|
||||
print(f"⚠ Heatmap ignorée pour {result.spec.key}{reason}.")
|
||||
|
||||
print("✔ Graphiques calendrier générés.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -2,6 +2,14 @@ from __future__ import annotations
|
||||
|
||||
from .base import export_plot_dataset
|
||||
from .calendar import plot_calendar_heatmap, plot_weekday_profiles
|
||||
from .calendar_overview import (
|
||||
CalendarHeatmapResult,
|
||||
CalendarHeatmapSpec,
|
||||
daily_mean_series,
|
||||
format_calendar_matrix,
|
||||
generate_calendar_heatmaps,
|
||||
rainfall_daily_total_series,
|
||||
)
|
||||
from .correlations import (
|
||||
plot_correlation_heatmap,
|
||||
plot_lagged_correlation,
|
||||
@ -31,6 +39,12 @@ __all__ = [
|
||||
"export_plot_dataset",
|
||||
"plot_calendar_heatmap",
|
||||
"plot_weekday_profiles",
|
||||
"CalendarHeatmapResult",
|
||||
"CalendarHeatmapSpec",
|
||||
"daily_mean_series",
|
||||
"format_calendar_matrix",
|
||||
"generate_calendar_heatmaps",
|
||||
"rainfall_daily_total_series",
|
||||
"plot_correlation_heatmap",
|
||||
"plot_lagged_correlation",
|
||||
"plot_rolling_correlation_heatmap",
|
||||
|
||||
152
meteo/plots/calendar_overview.py
Normal file
152
meteo/plots/calendar_overview.py
Normal file
@ -0,0 +1,152 @@
|
||||
"""Utilitaires pour générer des heatmaps calendrier configurables."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import calendar
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Callable, Sequence
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from meteo.analysis import compute_daily_rainfall_totals
|
||||
|
||||
from .calendar import plot_calendar_heatmap
|
||||
|
||||
CalendarAggregator = Callable[[pd.DataFrame], pd.Series]
|
||||
|
||||
__all__ = [
|
||||
"CalendarHeatmapSpec",
|
||||
"CalendarHeatmapResult",
|
||||
"daily_mean_series",
|
||||
"rainfall_daily_total_series",
|
||||
"format_calendar_matrix",
|
||||
"generate_calendar_heatmaps",
|
||||
]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CalendarHeatmapSpec:
|
||||
"""Description d'une heatmap calendrier à générer."""
|
||||
|
||||
key: str
|
||||
agg_label: str
|
||||
title_template: str
|
||||
cmap: str
|
||||
colorbar_label: str
|
||||
aggregator: CalendarAggregator
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CalendarHeatmapResult:
|
||||
"""Résultat d'une tentative de génération de heatmap calendrier."""
|
||||
|
||||
spec: CalendarHeatmapSpec
|
||||
output_path: Path | None
|
||||
reason: str | None = None
|
||||
|
||||
|
||||
def daily_mean_series(column: str) -> CalendarAggregator:
|
||||
"""Retourne un agrégateur qui calcule la moyenne quotidienne d'une colonne."""
|
||||
|
||||
def _aggregator(df: pd.DataFrame) -> pd.Series:
|
||||
if column not in df.columns:
|
||||
raise KeyError(column)
|
||||
if not isinstance(df.index, pd.DatetimeIndex):
|
||||
raise TypeError("Le DataFrame doit être indexé par des timestamps pour les moyennes quotidiennes.")
|
||||
return df[column].resample("1D").mean()
|
||||
|
||||
return _aggregator
|
||||
|
||||
|
||||
def rainfall_daily_total_series(df: pd.DataFrame) -> pd.Series:
|
||||
"""Calcule les cumuls quotidiens de précipitations."""
|
||||
|
||||
totals = compute_daily_rainfall_totals(df=df)
|
||||
return totals["daily_total"]
|
||||
|
||||
|
||||
def format_calendar_matrix(series: pd.Series, year: int, agg_label: str) -> pd.DataFrame:
|
||||
"""Transforme une série quotidienne en matrice calendrier mois x jours."""
|
||||
|
||||
if not isinstance(series.index, pd.DatetimeIndex):
|
||||
raise TypeError("La série doit avoir un index temporel pour être convertie en calendrier.")
|
||||
|
||||
tz = series.index.tz
|
||||
start = pd.Timestamp(year=year, month=1, day=1, tz=tz)
|
||||
end = pd.Timestamp(year=year, month=12, day=31, tz=tz)
|
||||
filtered = series.loc[(series.index >= start) & (series.index <= end)]
|
||||
|
||||
matrix = pd.DataFrame(
|
||||
np.nan,
|
||||
index=[calendar.month_name[m][:3] for m in range(1, 13)],
|
||||
columns=list(range(1, 32)),
|
||||
)
|
||||
|
||||
for timestamp, value in filtered.items():
|
||||
matrix.at[calendar.month_name[timestamp.month][:3], timestamp.day] = value
|
||||
|
||||
matrix.index.name = f"{agg_label} ({year})"
|
||||
return matrix
|
||||
|
||||
|
||||
def generate_calendar_heatmaps(
|
||||
df: pd.DataFrame,
|
||||
specs: Sequence[CalendarHeatmapSpec],
|
||||
*,
|
||||
year: int,
|
||||
output_dir: str | Path,
|
||||
) -> list[CalendarHeatmapResult]:
|
||||
"""Génère l'ensemble des heatmaps calendrier décrites dans `specs`."""
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
results: list[CalendarHeatmapResult] = []
|
||||
for spec in specs:
|
||||
try:
|
||||
daily_series = spec.aggregator(df)
|
||||
except Exception as exc:
|
||||
results.append(
|
||||
CalendarHeatmapResult(
|
||||
spec=spec,
|
||||
output_path=None,
|
||||
reason=str(exc),
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
if daily_series is None or daily_series.empty:
|
||||
results.append(
|
||||
CalendarHeatmapResult(
|
||||
spec=spec,
|
||||
output_path=None,
|
||||
reason="Série vide ou invalide.",
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
try:
|
||||
matrix = format_calendar_matrix(daily_series, year, spec.agg_label)
|
||||
except Exception as exc: # pragma: no cover - remonté au résultat
|
||||
results.append(
|
||||
CalendarHeatmapResult(
|
||||
spec=spec,
|
||||
output_path=None,
|
||||
reason=str(exc),
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
output_path = output_dir / f"calendar_{spec.key}_{year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=matrix,
|
||||
output_path=output_path,
|
||||
title=spec.title_template.format(year=year, label=spec.agg_label),
|
||||
cmap=spec.cmap,
|
||||
colorbar_label=spec.colorbar_label,
|
||||
)
|
||||
results.append(CalendarHeatmapResult(spec=spec, output_path=output_path.resolve()))
|
||||
|
||||
return results
|
||||
@ -1,216 +0,0 @@
|
||||
# scripts/plot_calendar_overview.py
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import calendar
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from meteo.dataset import load_raw_csv
|
||||
from meteo.analysis import compute_daily_rainfall_totals
|
||||
from meteo.plots import export_plot_dataset, plot_calendar_heatmap, plot_weekday_profiles
|
||||
from meteo.variables import VARIABLES_BY_KEY
|
||||
|
||||
|
||||
CSV_PATH = Path("data/weather_minutely.csv")
|
||||
OUTPUT_DIR = Path("figures/calendar")
|
||||
|
||||
WEEKDAY_VARIABLE_KEYS = ["temperature", "humidity", "wind_speed", "illuminance"]
|
||||
|
||||
|
||||
def _format_calendar_matrix(series: pd.Series, year: int, agg_label: str) -> pd.DataFrame:
|
||||
"""
|
||||
Transforme une série quotidienne en matrice mois x jours (1-31).
|
||||
"""
|
||||
start = pd.Timestamp(year=year, month=1, day=1, tz=series.index.tz)
|
||||
end = pd.Timestamp(year=year, month=12, day=31, tz=series.index.tz)
|
||||
filtered = series.loc[(series.index >= start) & (series.index <= end)]
|
||||
|
||||
matrix = pd.DataFrame(
|
||||
np.nan,
|
||||
index=[calendar.month_name[m][:3] for m in range(1, 13)],
|
||||
columns=list(range(1, 32)),
|
||||
)
|
||||
|
||||
for timestamp, value in filtered.items():
|
||||
month = timestamp.month
|
||||
day = timestamp.day
|
||||
matrix.at[calendar.month_name[month][:3], day] = value
|
||||
|
||||
matrix.index.name = f"{agg_label} ({year})"
|
||||
return matrix
|
||||
|
||||
|
||||
def compute_daily_mean(df: pd.DataFrame, column: str) -> pd.Series:
|
||||
return df[column].resample("1D").mean()
|
||||
|
||||
|
||||
def plot_combined_calendar(
|
||||
matrices: dict[str, pd.DataFrame],
|
||||
output_path: Path,
|
||||
*,
|
||||
title: str,
|
||||
) -> None:
|
||||
if not matrices:
|
||||
return
|
||||
|
||||
combined_dataset = pd.concat(matrices, axis=1)
|
||||
export_plot_dataset(combined_dataset, output_path)
|
||||
|
||||
n = len(matrices)
|
||||
fig, axes = plt.subplots(n, 1, figsize=(14, 4 * n), sharex=True)
|
||||
if n == 1:
|
||||
axes = [axes]
|
||||
|
||||
for ax, (label, matrix) in zip(axes, matrices.items()):
|
||||
data = matrix.to_numpy(dtype=float)
|
||||
im = ax.imshow(data, aspect="auto", interpolation="nearest", cmap=matrix.attrs.get("cmap", "viridis"))
|
||||
ax.set_xticks(np.arange(matrix.shape[1]))
|
||||
ax.set_xticklabels(matrix.columns, rotation=90)
|
||||
ax.set_yticks(np.arange(matrix.shape[0]))
|
||||
ax.set_yticklabels(matrix.index)
|
||||
ax.set_ylabel(label)
|
||||
cbar = fig.colorbar(im, ax=ax)
|
||||
if matrix.attrs.get("colorbar_label"):
|
||||
cbar.set_label(matrix.attrs["colorbar_label"])
|
||||
|
||||
axes[-1].set_xlabel("Jour du mois")
|
||||
fig.suptitle(title)
|
||||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
if not CSV_PATH.exists():
|
||||
print(f"⚠ Fichier introuvable : {CSV_PATH}")
|
||||
return
|
||||
|
||||
df = load_raw_csv(CSV_PATH)
|
||||
if df.empty:
|
||||
print("⚠ Dataset vide.")
|
||||
return
|
||||
|
||||
if not isinstance(df.index, pd.DatetimeIndex):
|
||||
print("⚠ Le dataset doit avoir un index temporel.")
|
||||
return
|
||||
|
||||
print(f"Dataset minuté chargé : {CSV_PATH}")
|
||||
print(f" Lignes : {len(df)}")
|
||||
print(f" Colonnes : {list(df.columns)}")
|
||||
print()
|
||||
|
||||
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
latest_year = df.index.year.max()
|
||||
print(f"Année retenue pour le calendrier : {latest_year}")
|
||||
|
||||
daily_totals = compute_daily_rainfall_totals(df=df)
|
||||
daily_rain = daily_totals["daily_total"]
|
||||
rain_matrix = _format_calendar_matrix(daily_rain, latest_year, "Pluie (mm)")
|
||||
rain_matrix.attrs["cmap"] = "Blues"
|
||||
rain_matrix.attrs["colorbar_label"] = "mm"
|
||||
rain_path = OUTPUT_DIR / f"calendar_rain_{latest_year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=rain_matrix,
|
||||
output_path=rain_path,
|
||||
title=f"Pluie quotidienne - {latest_year}",
|
||||
cmap="Blues",
|
||||
colorbar_label="mm",
|
||||
)
|
||||
print(f"✔ Heatmap pluie {latest_year} : {rain_path}")
|
||||
|
||||
daily_temp = compute_daily_mean(df, "temperature")
|
||||
temp_matrix = _format_calendar_matrix(daily_temp, latest_year, "Température (°C)")
|
||||
temp_matrix.attrs["cmap"] = "coolwarm"
|
||||
temp_matrix.attrs["colorbar_label"] = "°C"
|
||||
temp_path = OUTPUT_DIR / f"calendar_temperature_{latest_year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=temp_matrix,
|
||||
output_path=temp_path,
|
||||
title=f"Température moyenne quotidienne - {latest_year}",
|
||||
cmap="coolwarm",
|
||||
colorbar_label="°C",
|
||||
)
|
||||
print(f"✔ Heatmap température {latest_year} : {temp_path}")
|
||||
|
||||
matrices_for_combined = {
|
||||
"Pluie (mm)": rain_matrix,
|
||||
"Température (°C)": temp_matrix,
|
||||
}
|
||||
|
||||
if "pressure" in df.columns:
|
||||
daily_pressure = compute_daily_mean(df, "pressure")
|
||||
pressure_matrix = _format_calendar_matrix(daily_pressure, latest_year, "Pression (hPa)")
|
||||
pressure_matrix.attrs["cmap"] = "Greens"
|
||||
pressure_matrix.attrs["colorbar_label"] = "hPa"
|
||||
pressure_path = OUTPUT_DIR / f"calendar_pressure_{latest_year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=pressure_matrix,
|
||||
output_path=pressure_path,
|
||||
title=f"Pression moyenne quotidienne - {latest_year}",
|
||||
cmap="Greens",
|
||||
colorbar_label="hPa",
|
||||
)
|
||||
print(f"✔ Heatmap pression {latest_year} : {pressure_path}")
|
||||
matrices_for_combined["Pression (hPa)"] = pressure_matrix
|
||||
|
||||
if "illuminance" in df.columns:
|
||||
daily_lux = compute_daily_mean(df, "illuminance")
|
||||
lux_matrix = _format_calendar_matrix(daily_lux, latest_year, "Illuminance (lux)")
|
||||
lux_matrix.attrs["cmap"] = "YlOrBr"
|
||||
lux_matrix.attrs["colorbar_label"] = "lux"
|
||||
lux_path = OUTPUT_DIR / f"calendar_illuminance_{latest_year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=lux_matrix,
|
||||
output_path=lux_path,
|
||||
title=f"Illuminance moyenne quotidienne - {latest_year}",
|
||||
cmap="YlOrBr",
|
||||
colorbar_label="lux",
|
||||
)
|
||||
print(f"✔ Heatmap illuminance {latest_year} : {lux_path}")
|
||||
matrices_for_combined["Illuminance (lux)"] = lux_matrix
|
||||
|
||||
if "wind_speed" in df.columns:
|
||||
daily_wind = compute_daily_mean(df, "wind_speed")
|
||||
wind_matrix = _format_calendar_matrix(daily_wind, latest_year, "Vent (km/h)")
|
||||
wind_matrix.attrs["cmap"] = "Purples"
|
||||
wind_matrix.attrs["colorbar_label"] = "km/h"
|
||||
wind_path = OUTPUT_DIR / f"calendar_wind_{latest_year}.png"
|
||||
plot_calendar_heatmap(
|
||||
matrix=wind_matrix,
|
||||
output_path=wind_path,
|
||||
title=f"Vitesse moyenne du vent - {latest_year}",
|
||||
cmap="Purples",
|
||||
colorbar_label="km/h",
|
||||
)
|
||||
print(f"✔ Heatmap vent {latest_year} : {wind_path}")
|
||||
matrices_for_combined["Vent (km/h)"] = wind_matrix
|
||||
|
||||
combined_path = OUTPUT_DIR / f"calendar_combined_{latest_year}.png"
|
||||
plot_combined_calendar(
|
||||
matrices=matrices_for_combined,
|
||||
output_path=combined_path,
|
||||
title=f"Calendrier combiné {latest_year}",
|
||||
)
|
||||
print(f"✔ Calendrier combiné : {combined_path}")
|
||||
|
||||
hourly = df[WEEKDAY_VARIABLE_KEYS].resample("1h").mean()
|
||||
weekday_stats = hourly.groupby(hourly.index.dayofweek).mean()
|
||||
weekday_path = OUTPUT_DIR / "weekday_profiles.png"
|
||||
variables = [VARIABLES_BY_KEY[key] for key in WEEKDAY_VARIABLE_KEYS]
|
||||
plot_weekday_profiles(
|
||||
weekday_df=weekday_stats,
|
||||
variables=variables,
|
||||
output_path=weekday_path,
|
||||
title="Profils moyens par jour de semaine",
|
||||
)
|
||||
print(f"✔ Profils hebdomadaires : {weekday_path}")
|
||||
|
||||
print("✔ Graphiques calendrier générés.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -29,7 +29,10 @@ PLOT_SCRIPTS: tuple[PlotScript, ...] = (
|
||||
"plot_basic_variables",
|
||||
PROJECT_ROOT / "docs" / "03 - Premiers graphiques" / "scripts" / "plot_basic_variables.py",
|
||||
),
|
||||
PlotScript("plot_calendar_overview", PROJECT_ROOT / "scripts" / "plot_calendar_overview.py"),
|
||||
PlotScript(
|
||||
"plot_calendar_overview",
|
||||
PROJECT_ROOT / "docs" / "03 - Premiers graphiques" / "scripts" / "plot_calendar_overview.py",
|
||||
),
|
||||
PlotScript(
|
||||
"plot_all_pairwise_scatter",
|
||||
PROJECT_ROOT / "docs" / "04 - Corrélations binaires" / "scripts" / "plot_all_pairwise_scatter.py",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user