# Modèle Chronos-2 (foundation model HF) Objectif : tester un modèle de prévision généraliste récent (**Chronos-2**, Amazon) en zéro-shot sur notre station. On resample la température à l’heure, on coupe les dernières 96 h pour évaluer la prévision, et on compare le forecast à l’observé. ### Mise en route Installez les dépendances (`pip install -r requirements.txt`), puis lancez `run_chronos.py`. Le script lit `data/weather_minutely.csv`, resample la température en pas horaire, prend les 336 dernières heures en contexte et les 96 suivantes en cible. Il charge `amazon/chronos-t5-small` par défaut (modifiable via `CHRONOS_MODEL`), génère 20 échantillons dont on prend la moyenne, calcule MAE/RMSE, sauvegarde les CSV `chronos_forecast_.csv` et `chronos_errors_.csv`, et produit les figures associées dans `docs/11 - Modèle Chronos/figures/`. Pour comparer plusieurs tailles, lancez `run_chronos.py` avec différents `CHRONOS_MODEL` (mini/small/base), puis `compare_chronos.py` agrège les CSV et trace la comparaison. ### Paramètres Modifiables via variables d’environnement : `CHRONOS_MODEL` (défaut `amazon/chronos-t5-small`), `CHRONOS_CONTEXT` (336 h), `CHRONOS_HORIZON` (96 h), `CHRONOS_RESAMPLE` (`1h`), `CHRONOS_SAMPLES` (20). ### Résultats comparés (mêmes données, horizon 96 h) ![Comparaison des tailles Chronos](./figures/chronos_models_comparison.png) Sur la même fenêtre de validation locale, nous avons testé trois tailles : `chronos-t5-mini`, `chronos-t5-small` et `chronos-t5-base`. Le modèle **small** est ressorti devant (MAE ≈ 3,68 °C, RMSE ≈ 4,53 °C), les versions mini et base étant derrière (MAE ≈ 4,18–4,24 °C, RMSE ≈ 5,3–5,6 °C). Autrement dit, monter en taille n’a pas amélioré la prévision à 96 h sur ces données locales ; la version small offre le meilleur compromis précision/poids. ![Trajectoire prédit vs observé – mini](./figures/chronos_forecast_amazon__chronos-t5-mini.png) ![Trajectoire prédit vs observé – small](./figures/chronos_forecast_amazon__chronos-t5-small.png) ![Trajectoire prédit vs observé – base](./figures/chronos_forecast_amazon__chronos-t5-base.png) ### Lecture et portée Pour coller à nos horizons cibles, `run_chronos_multi.py` évalue Chronos-small sur 1 h, 6 h et 24 h pour la température, le vent et la pluie (horaire uniquement ; l’horizon 10 minutes n’est pas couvert par Chronos qui est pré-entraîné en pas horaire). Les figures `chronos_multi_temperature.png`, `chronos_multi_wind_speed.png` et `chronos_multi_rain_rate.png` illustrent où le modèle est le plus fiable : à 1 h, la température reste sous ~1,3 °C de MAE et le vent sous ~0,6 (unités du jeu) ; à 6 h, l’erreur grimpe modérément (≈2 °C temp., ≈3 km/h vent) ; à 24 h, elle dépasse 4–6 (°C/ km/h). Sur la pluie, le F1 reste nul à 1 h/6 h et ne monte qu’à ~0,15 à 24 h, signe que le modèle “foundation” horaire ne capture pas bien les occurrences locales rares. Les figures individuelles (`chronos_forecast_.png`, `chronos_errors_.png`) permettent de voir la trajectoire prédit vs observé et l’erreur par horizon. Au total, Chronos-small fournit un signal exploitable sur la température et un peu sur le vent pour des horizons courts à intermédiaires, mais reste faible sur la pluie et se dégrade nettement au-delà de 24 h. Une calibration locale, davantage de contexte ou une cible adaptée (pluie binaire calibrée) seraient nécessaires pour en faire un outil de prévision robuste sur toutes les variables. ### Réglages prudents (contexte 288 h, horizon limité à 64 h, 100 échantillons) ![Chronos small réglé – température](./figures/chronos_tuned_temperature.png) ![Chronos small réglé – vent](./figures/chronos_tuned_wind_speed.png) ![Chronos small réglé – pluie](./figures/chronos_tuned_rain_rate.png) Avec `run_chronos_tuned.py`, on réduit le contexte (288 h) et l’horizon maximum (64 h) tout en augmentant les échantillons (100). Sur la même fenêtre locale, la température s’améliore nettement : MAE ~0,75 °C à 1 h, ~1,27 °C à 6 h, ~3,40 °C à 24 h (vs 1,33/2,02/4,84 auparavant). Le vent progresse surtout à 24 h (≈2,39 contre ~6,38 auparavant), même si le 1 h est moins bon que la première passe. La pluie reste instable : le F1 peut atteindre 0,22–0,28 à 24–48 h mais les scores courts sont peu fiables. Limiter l’horizon à 64 h, raccourcir le contexte et lisser par davantage d’échantillons améliorent donc la température et le vent, mais ne suffisent pas à rendre la pluie prédictible. ### Dernier essai “comme en vrai” : prévision sur les 6 dernières heures ![Chronos small – erreurs 6 h holdout](./figures/chronos_holdout6_errors.png) On a masqué les 6 dernières heures de la série et demandé à Chronos-small (contexte 288 h, 50 échantillons) de prévoir température, vent (vitesse + direction), humidité et pression, puis comparé aux valeurs réelles. Moyennes des erreurs absolues sur ces 6 pas : température ~0,84 °C, vent ~1,2 km/h, direction ~3,9°, pression ~5,3 hPa, humidité ~24 %. Les erreurs restent très contenues sur température/vent et la direction est raisonnable (quelques degrés) ; la pression dérive (5 hPa) et l’humidité est clairement décalée. Ce test confirme que Chronos peut fournir des tendances crédibles à très court terme (<6 h) sur température et vent, mais pas sur l’humidité (et on a vu plus haut que la pluie reste peu fiable).