656 lines
21 KiB
Python
656 lines
21 KiB
Python
# meteo/plots.py
|
||
from __future__ import annotations
|
||
|
||
from pathlib import Path
|
||
from typing import Callable, Sequence
|
||
|
||
import matplotlib.pyplot as plt
|
||
from matplotlib.colors import Normalize
|
||
from matplotlib.ticker import FuncFormatter
|
||
import matplotlib.dates as mdates
|
||
import numpy as np
|
||
import pandas as pd
|
||
|
||
from .analysis import DiurnalCycleStats
|
||
from .variables import Variable
|
||
|
||
|
||
def plot_scatter_pair(
|
||
df: pd.DataFrame,
|
||
var_x: Variable,
|
||
var_y: Variable,
|
||
output_path: str | Path,
|
||
*,
|
||
sample_step: int = 10,
|
||
color_by_time: bool = True,
|
||
cmap: str = "viridis",
|
||
) -> Path:
|
||
"""
|
||
Trace un nuage de points (scatter) pour une paire de variables.
|
||
|
||
- On sous-échantillonne les données avec `sample_step` (par exemple,
|
||
1 point sur 10) pour éviter un graphique illisible.
|
||
- Si `color_by_time` vaut True et que l'index est temporel, les points
|
||
sont colorés du plus ancien (sombre) au plus récent (clair).
|
||
- Lorsque l'axe Y correspond à la direction du vent, on bascule sur
|
||
un graphique polaire plus adapté (0° = Nord, sens horaire) avec
|
||
un rayon normalisé : centre = valeur minimale, bord = maximale.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
# On ne garde que les colonnes pertinentes et les lignes complètes
|
||
df_pair = df[[var_x.column, var_y.column]].dropna()
|
||
|
||
if sample_step > 1:
|
||
df_pair = df_pair.iloc[::sample_step, :]
|
||
|
||
use_polar = var_y.key == "wind_direction"
|
||
|
||
if use_polar:
|
||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"})
|
||
else:
|
||
fig, ax = plt.subplots()
|
||
|
||
scatter_kwargs: dict = {"s": 5, "alpha": 0.5}
|
||
colorbar_meta: dict | None = None
|
||
|
||
if color_by_time and isinstance(df_pair.index, pd.DatetimeIndex):
|
||
idx = df_pair.index
|
||
timestamps = idx.view("int64")
|
||
time_span = np.ptp(timestamps)
|
||
norm = (
|
||
Normalize(vmin=timestamps.min(), vmax=timestamps.max())
|
||
if time_span > 0
|
||
else None
|
||
)
|
||
scatter_kwargs |= {"c": timestamps, "cmap": cmap}
|
||
if norm is not None:
|
||
scatter_kwargs["norm"] = norm
|
||
colorbar_meta = {
|
||
"index": idx,
|
||
"timestamps": timestamps,
|
||
"time_span": time_span,
|
||
}
|
||
|
||
if use_polar:
|
||
theta = np.deg2rad(df_pair[var_y.column].to_numpy(dtype=float) % 360.0)
|
||
radius_raw = df_pair[var_x.column].to_numpy(dtype=float)
|
||
|
||
if radius_raw.size == 0:
|
||
radius = radius_raw
|
||
value_min = value_max = float("nan")
|
||
else:
|
||
value_min = float(np.min(radius_raw))
|
||
value_max = float(np.max(radius_raw))
|
||
if np.isclose(value_min, value_max):
|
||
radius = np.zeros_like(radius_raw)
|
||
else:
|
||
radius = (radius_raw - value_min) / (value_max - value_min)
|
||
|
||
scatter = ax.scatter(theta, radius, **scatter_kwargs)
|
||
|
||
cardinal_angles = np.deg2rad(np.arange(0, 360, 45))
|
||
cardinal_labels = ["N", "NE", "E", "SE", "S", "SO", "O", "NO"]
|
||
ax.set_theta_zero_location("N")
|
||
ax.set_theta_direction(-1)
|
||
ax.set_xticks(cardinal_angles)
|
||
ax.set_xticklabels(cardinal_labels)
|
||
|
||
if radius_raw.size > 0:
|
||
if np.isclose(value_min, value_max):
|
||
radial_positions = [0.0]
|
||
else:
|
||
radial_positions = np.linspace(0.0, 1.0, num=5).tolist()
|
||
if np.isclose(value_min, value_max):
|
||
actual_values = [value_min]
|
||
else:
|
||
actual_values = [
|
||
value_min + pos * (value_max - value_min)
|
||
for pos in radial_positions
|
||
]
|
||
ax.set_yticks(radial_positions)
|
||
ax.set_yticklabels([f"{val:.1f}" for val in actual_values])
|
||
ax.set_rlabel_position(225)
|
||
ax.set_ylim(0.0, 1.0)
|
||
|
||
unit_suffix = f" {var_x.unit}" if var_x.unit else ""
|
||
ax.text(
|
||
0.5,
|
||
-0.1,
|
||
f"Centre = {value_min:.1f}{unit_suffix}, bord = {value_max:.1f}{unit_suffix}",
|
||
transform=ax.transAxes,
|
||
ha="center",
|
||
va="top",
|
||
fontsize=8,
|
||
)
|
||
|
||
radial_label = f"{var_x.label} ({var_x.unit})" if var_x.unit else var_x.label
|
||
ax.set_ylabel(radial_label, labelpad=20)
|
||
else:
|
||
scatter = ax.scatter(
|
||
df_pair[var_x.column],
|
||
df_pair[var_y.column],
|
||
**scatter_kwargs,
|
||
)
|
||
|
||
if colorbar_meta is not None:
|
||
cbar = fig.colorbar(scatter, ax=ax)
|
||
idx = colorbar_meta["index"]
|
||
timestamps = colorbar_meta["timestamps"]
|
||
time_span = colorbar_meta["time_span"]
|
||
|
||
def _format_tick_label(ts: pd.Timestamp) -> str:
|
||
base = f"{ts.strftime('%Y-%m-%d')}\n{ts.strftime('%H:%M')}"
|
||
tz_name = ts.tzname()
|
||
return f"{base} ({tz_name})" if tz_name else base
|
||
|
||
if time_span > 0:
|
||
tick_datetimes = pd.date_range(start=idx.min(), end=idx.max(), periods=5)
|
||
tick_positions = tick_datetimes.view("int64")
|
||
tick_labels = [_format_tick_label(ts) for ts in tick_datetimes]
|
||
cbar.set_ticks(tick_positions)
|
||
cbar.set_ticklabels(tick_labels)
|
||
else:
|
||
cbar.set_ticks([timestamps[0]])
|
||
ts = idx[0]
|
||
cbar.set_ticklabels([_format_tick_label(ts)])
|
||
|
||
cbar.set_label("Temps (ancien → récent)")
|
||
|
||
if use_polar:
|
||
ax.set_title(f"{var_y.label} en fonction de {var_x.label}")
|
||
else:
|
||
ax.set_xlabel(f"{var_x.label} ({var_x.unit})")
|
||
ax.set_ylabel(f"{var_y.label} ({var_y.unit})")
|
||
ax.set_title(f"{var_y.label} en fonction de {var_x.label}")
|
||
fig.tight_layout()
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_hexbin_with_third_variable(
|
||
df: pd.DataFrame,
|
||
var_x: Variable,
|
||
var_y: Variable,
|
||
var_color: Variable,
|
||
output_path: str | Path,
|
||
*,
|
||
gridsize: int = 60,
|
||
mincnt: int = 5,
|
||
reduce_func: Callable[[np.ndarray], float] | None = None,
|
||
reduce_func_label: str | None = None,
|
||
cmap: str = "viridis",
|
||
) -> Path:
|
||
"""
|
||
Trace une carte de densité hexbin où la couleur encode une 3e variable.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
reduce_func = reduce_func or np.mean
|
||
|
||
df_xyz = df[[var_x.column, var_y.column, var_color.column]].dropna()
|
||
if df_xyz.empty:
|
||
fig, ax = plt.subplots()
|
||
ax.text(
|
||
0.5,
|
||
0.5,
|
||
"Pas de données valides pour cette combinaison.",
|
||
ha="center",
|
||
va="center",
|
||
)
|
||
ax.set_axis_off()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
fig, ax = plt.subplots()
|
||
hb = ax.hexbin(
|
||
df_xyz[var_x.column],
|
||
df_xyz[var_y.column],
|
||
C=df_xyz[var_color.column],
|
||
reduce_C_function=reduce_func,
|
||
gridsize=gridsize,
|
||
cmap=cmap,
|
||
mincnt=mincnt,
|
||
)
|
||
|
||
func_label = reduce_func_label or getattr(reduce_func, "__name__", "statistique")
|
||
colorbar_label = f"{func_label.capitalize()} de {var_color.label}"
|
||
cbar = fig.colorbar(hb, ax=ax)
|
||
cbar.set_label(colorbar_label)
|
||
|
||
ax.set_xlabel(f"{var_x.label} ({var_x.unit})")
|
||
ax.set_ylabel(f"{var_y.label} ({var_y.unit})")
|
||
ax.set_title(
|
||
f"{var_y.label} vs {var_x.label}\nCouleur : {func_label} de {var_color.label}"
|
||
)
|
||
ax.grid(False)
|
||
fig.tight_layout()
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_lagged_correlation(
|
||
lag_df: pd.DataFrame,
|
||
var_x: Variable,
|
||
var_y: Variable,
|
||
output_path: str | Path,
|
||
) -> Path:
|
||
"""
|
||
Trace la corrélation en fonction du lag (en minutes) entre deux variables.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
plt.figure()
|
||
plt.plot(lag_df.index, lag_df["correlation"])
|
||
plt.axvline(0, linestyle="--") # lag = 0
|
||
plt.xlabel("Décalage (minutes)\n(lag > 0 : X précède Y)")
|
||
plt.ylabel("Corrélation")
|
||
plt.title(f"Corrélation décalée : {var_x.label} → {var_y.label}")
|
||
plt.grid(True)
|
||
plt.tight_layout()
|
||
plt.savefig(output_path, dpi=150)
|
||
plt.close()
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
|
||
def plot_correlation_heatmap(
|
||
corr: pd.DataFrame,
|
||
variables: Sequence[Variable],
|
||
output_path: str | Path,
|
||
*,
|
||
annotate: bool = True,
|
||
) -> Path:
|
||
"""
|
||
Trace une heatmap de la matrice de corrélation.
|
||
|
||
Paramètres
|
||
----------
|
||
corr :
|
||
Matrice de corrélation (index et colonnes doivent correspondre
|
||
aux noms de colonnes des variables).
|
||
variables :
|
||
Liste de Variable, dans l'ordre où elles doivent apparaître.
|
||
output_path :
|
||
Chemin du fichier image à écrire.
|
||
annotate :
|
||
Si True, affiche la valeur numérique dans chaque case.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
columns = [v.column for v in variables]
|
||
labels = [v.label for v in variables]
|
||
|
||
# On aligne la matrice sur l'ordre désiré
|
||
corr = corr.loc[columns, columns]
|
||
|
||
data = corr.to_numpy()
|
||
|
||
fig, ax = plt.subplots()
|
||
im = ax.imshow(data, vmin=-1.0, vmax=1.0)
|
||
|
||
# Ticks et labels
|
||
ax.set_xticks(np.arange(len(labels)))
|
||
ax.set_yticks(np.arange(len(labels)))
|
||
ax.set_xticklabels(labels, rotation=45, ha="right")
|
||
ax.set_yticklabels(labels)
|
||
|
||
# Axe en haut/bas selon préférence (ici on laisse en bas)
|
||
ax.set_title("Matrice de corrélation (coef. de Pearson)")
|
||
|
||
# Barre de couleur
|
||
cbar = plt.colorbar(im, ax=ax)
|
||
cbar.set_label("Corrélation")
|
||
|
||
# Annotation des cases
|
||
if annotate:
|
||
n = data.shape[0]
|
||
for i in range(n):
|
||
for j in range(n):
|
||
if i == j:
|
||
text = "—"
|
||
else:
|
||
val = data[i, j]
|
||
if np.isnan(val):
|
||
text = ""
|
||
else:
|
||
text = f"{val:.2f}"
|
||
ax.text(
|
||
j,
|
||
i,
|
||
text,
|
||
ha="center",
|
||
va="center",
|
||
)
|
||
|
||
plt.tight_layout()
|
||
plt.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_rolling_correlation_heatmap(
|
||
rolling_corr: pd.DataFrame,
|
||
output_path: str | Path,
|
||
*,
|
||
cmap: str = "coolwarm",
|
||
vmin: float = -1.0,
|
||
vmax: float = 1.0,
|
||
time_tick_count: int = 6,
|
||
) -> Path:
|
||
"""
|
||
Visualise l'évolution de corrélations glissantes pour plusieurs paires.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
if rolling_corr.empty:
|
||
fig, ax = plt.subplots()
|
||
ax.text(0.5, 0.5, "Aucune donnée de corrélation glissante.", ha="center", va="center")
|
||
ax.set_axis_off()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
labels = list(rolling_corr.columns)
|
||
data = rolling_corr.to_numpy().T
|
||
|
||
height = max(3.0, 0.6 * len(labels))
|
||
fig, ax = plt.subplots(figsize=(10, height))
|
||
im = ax.imshow(data, aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
|
||
|
||
ax.set_yticks(np.arange(len(labels)))
|
||
ax.set_yticklabels(labels)
|
||
|
||
if isinstance(rolling_corr.index, pd.DatetimeIndex):
|
||
times = rolling_corr.index
|
||
if len(times) > 1:
|
||
tick_idx = np.linspace(0, len(times) - 1, num=min(time_tick_count, len(times)), dtype=int)
|
||
else:
|
||
tick_idx = np.array([0])
|
||
tick_labels = [times[i].strftime("%Y-%m-%d\n%H:%M") for i in tick_idx]
|
||
else:
|
||
tick_idx = np.linspace(0, len(rolling_corr.index) - 1, num=min(time_tick_count, len(rolling_corr.index)), dtype=int)
|
||
tick_labels = [str(rolling_corr.index[i]) for i in tick_idx]
|
||
|
||
ax.set_xticks(tick_idx)
|
||
ax.set_xticklabels(tick_labels, rotation=30, ha="right")
|
||
|
||
ax.set_xlabel("Temps (fin de fenêtre)")
|
||
ax.set_ylabel("Paire de variables")
|
||
ax.set_title("Corrélations glissantes")
|
||
|
||
cbar = fig.colorbar(im, ax=ax)
|
||
cbar.set_label("Coefficient de corrélation")
|
||
|
||
fig.tight_layout()
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_event_composite(
|
||
aligned_segments: pd.DataFrame,
|
||
variables: Sequence[Variable],
|
||
output_path: str | Path,
|
||
*,
|
||
quantiles: tuple[float, float] = (0.25, 0.75),
|
||
baseline_label: str = "Début de l'événement",
|
||
) -> Path:
|
||
"""
|
||
Trace les moyennes/médianes autour d'événements détectés avec éventail inter-quantiles.
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
if aligned_segments.empty:
|
||
fig, ax = plt.subplots()
|
||
ax.text(
|
||
0.5,
|
||
0.5,
|
||
"Aucun événement aligné à tracer.",
|
||
ha="center",
|
||
va="center",
|
||
)
|
||
ax.set_axis_off()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
if "offset_minutes" not in aligned_segments.index.names:
|
||
raise ValueError("aligned_segments doit avoir un niveau 'offset_minutes'.")
|
||
|
||
group = aligned_segments.groupby(level="offset_minutes")
|
||
mean_df = group.mean()
|
||
median_df = group.median()
|
||
|
||
q_low, q_high = quantiles
|
||
quantile_low = group.quantile(q_low) if q_low is not None else None
|
||
quantile_high = group.quantile(q_high) if q_high is not None else None
|
||
|
||
offsets = mean_df.index.to_numpy(dtype=float)
|
||
n_vars = len(variables)
|
||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||
if n_vars == 1:
|
||
axes = [axes]
|
||
|
||
for ax, var in zip(axes, variables):
|
||
col = var.column
|
||
ax.axvline(0, color="black", linestyle="--", linewidth=1, label=baseline_label)
|
||
ax.plot(offsets, mean_df[col], color="tab:blue", label="Moyenne")
|
||
ax.plot(offsets, median_df[col], color="tab:orange", linestyle="--", label="Médiane")
|
||
|
||
if quantile_low is not None and quantile_high is not None:
|
||
ax.fill_between(
|
||
offsets,
|
||
quantile_low[col],
|
||
quantile_high[col],
|
||
color="tab:blue",
|
||
alpha=0.2,
|
||
label=f"IQR {int(q_low*100)}–{int(q_high*100)}%",
|
||
)
|
||
|
||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||
ax.set_ylabel(ylabel)
|
||
ax.grid(True, linestyle=":", alpha=0.5)
|
||
|
||
axes[-1].set_xlabel("Minutes autour de l'événement")
|
||
axes[0].legend(loc="upper right")
|
||
total_events = len(aligned_segments.index.get_level_values("event_id").unique())
|
||
fig.suptitle(f"Composites autour d'événements ({total_events} occurrences)")
|
||
|
||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_wind_rose(
|
||
frequencies: pd.DataFrame,
|
||
speed_bin_labels: Sequence[str],
|
||
output_path: str | Path,
|
||
*,
|
||
sector_size_deg: float,
|
||
cmap: str = "viridis",
|
||
) -> Path:
|
||
"""
|
||
Trace une rose des vents empilée par classes de vitesses (en % du temps).
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
if frequencies.empty:
|
||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"})
|
||
ax.text(0.5, 0.5, "Données de vent insuffisantes.", ha="center", va="center")
|
||
ax.set_axis_off()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6))
|
||
cmap_obj = plt.get_cmap(cmap, len(speed_bin_labels))
|
||
colors = cmap_obj(np.linspace(0.2, 0.95, len(speed_bin_labels)))
|
||
|
||
angles = np.deg2rad(frequencies.index.to_numpy(dtype=float) + sector_size_deg / 2.0)
|
||
width = np.deg2rad(sector_size_deg)
|
||
bottom = np.zeros_like(angles, dtype=float)
|
||
|
||
for label, color in zip(speed_bin_labels, colors):
|
||
values = frequencies[label].to_numpy(dtype=float)
|
||
bars = ax.bar(
|
||
angles,
|
||
values,
|
||
width=width,
|
||
bottom=bottom,
|
||
color=color,
|
||
edgecolor="white",
|
||
linewidth=0.5,
|
||
align="center",
|
||
)
|
||
bottom += values
|
||
|
||
ax.set_theta_zero_location("N")
|
||
ax.set_theta_direction(-1)
|
||
ax.set_xticks(np.deg2rad(np.arange(0, 360, 45)))
|
||
ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SO", "O", "NO"])
|
||
max_radius = np.max(bottom)
|
||
ax.set_ylim(0, max(max_radius * 1.1, 1))
|
||
ax.yaxis.set_major_formatter(FuncFormatter(lambda val, _pos: f"{val:.0f}%"))
|
||
ax.set_title("Rose des vents (fréquence en %)")
|
||
legend_handles = [
|
||
plt.Line2D([0], [0], color=color, linewidth=6, label=label) for label, color in zip(speed_bin_labels, colors)
|
||
]
|
||
ax.legend(
|
||
handles=legend_handles,
|
||
loc="lower center",
|
||
bbox_to_anchor=(0.5, -0.15),
|
||
ncol=2,
|
||
title="Vitesses (km/h)",
|
||
)
|
||
|
||
fig.tight_layout()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_diurnal_cycle(
|
||
stats: DiurnalCycleStats,
|
||
variables: Sequence[Variable],
|
||
output_path: str | Path,
|
||
) -> Path:
|
||
"""
|
||
Trace les cycles diurnes moyens (moyenne/médiane + quantiles).
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
hours = stats.mean.index.to_numpy(dtype=float)
|
||
n_vars = len(variables)
|
||
fig, axes = plt.subplots(n_vars, 1, figsize=(10, 3 * n_vars), sharex=True)
|
||
if n_vars == 1:
|
||
axes = [axes]
|
||
|
||
for ax, var in zip(axes, variables):
|
||
col = var.column
|
||
ax.plot(hours, stats.mean[col], label="Moyenne", color="tab:blue")
|
||
ax.plot(hours, stats.median[col], label="Médiane", color="tab:orange", linestyle="--")
|
||
if stats.quantile_low is not None and stats.quantile_high is not None:
|
||
ax.fill_between(
|
||
hours,
|
||
stats.quantile_low[col],
|
||
stats.quantile_high[col],
|
||
color="tab:blue",
|
||
alpha=0.15,
|
||
label=(
|
||
f"Quantiles {int(stats.quantile_low_level * 100)}–{int(stats.quantile_high_level * 100)}%"
|
||
if stats.quantile_low_level is not None and stats.quantile_high_level is not None
|
||
else "Quantiles"
|
||
),
|
||
)
|
||
ylabel = f"{var.label} ({var.unit})" if var.unit else var.label
|
||
ax.set_ylabel(ylabel)
|
||
ax.grid(True, linestyle=":", alpha=0.5)
|
||
|
||
axes[-1].set_xlabel("Heure locale")
|
||
axes[0].legend(loc="upper right")
|
||
axes[-1].set_xticks(range(0, 24, 2))
|
||
axes[-1].set_xlim(0, 23)
|
||
fig.suptitle("Cycle diurne moyen")
|
||
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
|
||
def plot_daily_rainfall_hyetograph(
|
||
daily_rain: pd.DataFrame,
|
||
output_path: str | Path,
|
||
) -> Path:
|
||
"""
|
||
Affiche les cumuls quotidiens de pluie (barres) et le cumul annuel (ligne).
|
||
"""
|
||
output_path = Path(output_path)
|
||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||
|
||
if daily_rain.empty:
|
||
fig, ax = plt.subplots()
|
||
ax.text(0.5, 0.5, "Pas de données de précipitations disponibles.", ha="center", va="center")
|
||
ax.set_axis_off()
|
||
fig.savefig(output_path, dpi=150, bbox_inches="tight")
|
||
plt.close(fig)
|
||
return output_path.resolve()
|
||
|
||
fig, ax1 = plt.subplots(figsize=(12, 5))
|
||
ax1.bar(
|
||
daily_rain.index,
|
||
daily_rain["daily_total"],
|
||
width=0.8,
|
||
color="tab:blue",
|
||
alpha=0.7,
|
||
label="Pluie quotidienne",
|
||
)
|
||
ax1.set_ylabel("Pluie quotidienne (mm)")
|
||
ax1.set_xlabel("Date")
|
||
ax1.grid(True, axis="y", linestyle=":", alpha=0.5)
|
||
|
||
ax2 = ax1.twinx()
|
||
ax2.plot(
|
||
daily_rain.index,
|
||
daily_rain["cumulative_total"],
|
||
color="tab:red",
|
||
linewidth=2,
|
||
label="Cumul annuel",
|
||
)
|
||
ax2.set_ylabel("Pluie cumulée (mm)")
|
||
|
||
locator = mdates.AutoDateLocator()
|
||
formatter = mdates.ConciseDateFormatter(locator)
|
||
ax1.xaxis.set_major_locator(locator)
|
||
ax1.xaxis.set_major_formatter(formatter)
|
||
|
||
lines_labels = [
|
||
(ax1.get_legend_handles_labels()),
|
||
(ax2.get_legend_handles_labels()),
|
||
]
|
||
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
|
||
ax1.legend(lines, labels, loc="upper left")
|
||
|
||
fig.tight_layout()
|
||
fig.savefig(output_path, dpi=150)
|
||
plt.close(fig)
|
||
return output_path.resolve()
|