217 lines
7.5 KiB
Python
217 lines
7.5 KiB
Python
# scripts/plot_calendar_overview.py
|
|
from __future__ import annotations
|
|
|
|
from pathlib import Path
|
|
|
|
import calendar
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
from meteo.dataset import load_raw_csv
|
|
from meteo.analysis import compute_daily_rainfall_totals
|
|
from meteo.plots import export_plot_dataset, plot_calendar_heatmap, plot_weekday_profiles
|
|
from meteo.variables import VARIABLES_BY_KEY
|
|
|
|
|
|
CSV_PATH = Path("data/weather_minutely.csv")
|
|
OUTPUT_DIR = Path("figures/calendar")
|
|
|
|
WEEKDAY_VARIABLE_KEYS = ["temperature", "humidity", "wind_speed", "illuminance"]
|
|
|
|
|
|
def _format_calendar_matrix(series: pd.Series, year: int, agg_label: str) -> pd.DataFrame:
|
|
"""
|
|
Transforme une série quotidienne en matrice mois x jours (1-31).
|
|
"""
|
|
start = pd.Timestamp(year=year, month=1, day=1, tz=series.index.tz)
|
|
end = pd.Timestamp(year=year, month=12, day=31, tz=series.index.tz)
|
|
filtered = series.loc[(series.index >= start) & (series.index <= end)]
|
|
|
|
matrix = pd.DataFrame(
|
|
np.nan,
|
|
index=[calendar.month_name[m][:3] for m in range(1, 13)],
|
|
columns=list(range(1, 32)),
|
|
)
|
|
|
|
for timestamp, value in filtered.items():
|
|
month = timestamp.month
|
|
day = timestamp.day
|
|
matrix.at[calendar.month_name[month][:3], day] = value
|
|
|
|
matrix.index.name = f"{agg_label} ({year})"
|
|
return matrix
|
|
|
|
|
|
def compute_daily_mean(df: pd.DataFrame, column: str) -> pd.Series:
|
|
return df[column].resample("1D").mean()
|
|
|
|
|
|
def plot_combined_calendar(
|
|
matrices: dict[str, pd.DataFrame],
|
|
output_path: Path,
|
|
*,
|
|
title: str,
|
|
) -> None:
|
|
if not matrices:
|
|
return
|
|
|
|
combined_dataset = pd.concat(matrices, axis=1)
|
|
export_plot_dataset(combined_dataset, output_path)
|
|
|
|
n = len(matrices)
|
|
fig, axes = plt.subplots(n, 1, figsize=(14, 4 * n), sharex=True)
|
|
if n == 1:
|
|
axes = [axes]
|
|
|
|
for ax, (label, matrix) in zip(axes, matrices.items()):
|
|
data = matrix.to_numpy(dtype=float)
|
|
im = ax.imshow(data, aspect="auto", interpolation="nearest", cmap=matrix.attrs.get("cmap", "viridis"))
|
|
ax.set_xticks(np.arange(matrix.shape[1]))
|
|
ax.set_xticklabels(matrix.columns, rotation=90)
|
|
ax.set_yticks(np.arange(matrix.shape[0]))
|
|
ax.set_yticklabels(matrix.index)
|
|
ax.set_ylabel(label)
|
|
cbar = fig.colorbar(im, ax=ax)
|
|
if matrix.attrs.get("colorbar_label"):
|
|
cbar.set_label(matrix.attrs["colorbar_label"])
|
|
|
|
axes[-1].set_xlabel("Jour du mois")
|
|
fig.suptitle(title)
|
|
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
|
fig.savefig(output_path, dpi=150)
|
|
plt.close(fig)
|
|
|
|
|
|
def main() -> None:
|
|
if not CSV_PATH.exists():
|
|
print(f"⚠ Fichier introuvable : {CSV_PATH}")
|
|
return
|
|
|
|
df = load_raw_csv(CSV_PATH)
|
|
if df.empty:
|
|
print("⚠ Dataset vide.")
|
|
return
|
|
|
|
if not isinstance(df.index, pd.DatetimeIndex):
|
|
print("⚠ Le dataset doit avoir un index temporel.")
|
|
return
|
|
|
|
print(f"Dataset minuté chargé : {CSV_PATH}")
|
|
print(f" Lignes : {len(df)}")
|
|
print(f" Colonnes : {list(df.columns)}")
|
|
print()
|
|
|
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
latest_year = df.index.year.max()
|
|
print(f"Année retenue pour le calendrier : {latest_year}")
|
|
|
|
daily_totals = compute_daily_rainfall_totals(df=df)
|
|
daily_rain = daily_totals["daily_total"]
|
|
rain_matrix = _format_calendar_matrix(daily_rain, latest_year, "Pluie (mm)")
|
|
rain_matrix.attrs["cmap"] = "Blues"
|
|
rain_matrix.attrs["colorbar_label"] = "mm"
|
|
rain_path = OUTPUT_DIR / f"calendar_rain_{latest_year}.png"
|
|
plot_calendar_heatmap(
|
|
matrix=rain_matrix,
|
|
output_path=rain_path,
|
|
title=f"Pluie quotidienne - {latest_year}",
|
|
cmap="Blues",
|
|
colorbar_label="mm",
|
|
)
|
|
print(f"✔ Heatmap pluie {latest_year} : {rain_path}")
|
|
|
|
daily_temp = compute_daily_mean(df, "temperature")
|
|
temp_matrix = _format_calendar_matrix(daily_temp, latest_year, "Température (°C)")
|
|
temp_matrix.attrs["cmap"] = "coolwarm"
|
|
temp_matrix.attrs["colorbar_label"] = "°C"
|
|
temp_path = OUTPUT_DIR / f"calendar_temperature_{latest_year}.png"
|
|
plot_calendar_heatmap(
|
|
matrix=temp_matrix,
|
|
output_path=temp_path,
|
|
title=f"Température moyenne quotidienne - {latest_year}",
|
|
cmap="coolwarm",
|
|
colorbar_label="°C",
|
|
)
|
|
print(f"✔ Heatmap température {latest_year} : {temp_path}")
|
|
|
|
matrices_for_combined = {
|
|
"Pluie (mm)": rain_matrix,
|
|
"Température (°C)": temp_matrix,
|
|
}
|
|
|
|
if "pressure" in df.columns:
|
|
daily_pressure = compute_daily_mean(df, "pressure")
|
|
pressure_matrix = _format_calendar_matrix(daily_pressure, latest_year, "Pression (hPa)")
|
|
pressure_matrix.attrs["cmap"] = "Greens"
|
|
pressure_matrix.attrs["colorbar_label"] = "hPa"
|
|
pressure_path = OUTPUT_DIR / f"calendar_pressure_{latest_year}.png"
|
|
plot_calendar_heatmap(
|
|
matrix=pressure_matrix,
|
|
output_path=pressure_path,
|
|
title=f"Pression moyenne quotidienne - {latest_year}",
|
|
cmap="Greens",
|
|
colorbar_label="hPa",
|
|
)
|
|
print(f"✔ Heatmap pression {latest_year} : {pressure_path}")
|
|
matrices_for_combined["Pression (hPa)"] = pressure_matrix
|
|
|
|
if "illuminance" in df.columns:
|
|
daily_lux = compute_daily_mean(df, "illuminance")
|
|
lux_matrix = _format_calendar_matrix(daily_lux, latest_year, "Illuminance (lux)")
|
|
lux_matrix.attrs["cmap"] = "YlOrBr"
|
|
lux_matrix.attrs["colorbar_label"] = "lux"
|
|
lux_path = OUTPUT_DIR / f"calendar_illuminance_{latest_year}.png"
|
|
plot_calendar_heatmap(
|
|
matrix=lux_matrix,
|
|
output_path=lux_path,
|
|
title=f"Illuminance moyenne quotidienne - {latest_year}",
|
|
cmap="YlOrBr",
|
|
colorbar_label="lux",
|
|
)
|
|
print(f"✔ Heatmap illuminance {latest_year} : {lux_path}")
|
|
matrices_for_combined["Illuminance (lux)"] = lux_matrix
|
|
|
|
if "wind_speed" in df.columns:
|
|
daily_wind = compute_daily_mean(df, "wind_speed")
|
|
wind_matrix = _format_calendar_matrix(daily_wind, latest_year, "Vent (km/h)")
|
|
wind_matrix.attrs["cmap"] = "Purples"
|
|
wind_matrix.attrs["colorbar_label"] = "km/h"
|
|
wind_path = OUTPUT_DIR / f"calendar_wind_{latest_year}.png"
|
|
plot_calendar_heatmap(
|
|
matrix=wind_matrix,
|
|
output_path=wind_path,
|
|
title=f"Vitesse moyenne du vent - {latest_year}",
|
|
cmap="Purples",
|
|
colorbar_label="km/h",
|
|
)
|
|
print(f"✔ Heatmap vent {latest_year} : {wind_path}")
|
|
matrices_for_combined["Vent (km/h)"] = wind_matrix
|
|
|
|
combined_path = OUTPUT_DIR / f"calendar_combined_{latest_year}.png"
|
|
plot_combined_calendar(
|
|
matrices=matrices_for_combined,
|
|
output_path=combined_path,
|
|
title=f"Calendrier combiné {latest_year}",
|
|
)
|
|
print(f"✔ Calendrier combiné : {combined_path}")
|
|
|
|
hourly = df[WEEKDAY_VARIABLE_KEYS].resample("1h").mean()
|
|
weekday_stats = hourly.groupby(hourly.index.dayofweek).mean()
|
|
weekday_path = OUTPUT_DIR / "weekday_profiles.png"
|
|
variables = [VARIABLES_BY_KEY[key] for key in WEEKDAY_VARIABLE_KEYS]
|
|
plot_weekday_profiles(
|
|
weekday_df=weekday_stats,
|
|
variables=variables,
|
|
output_path=weekday_path,
|
|
title="Profils moyens par jour de semaine",
|
|
)
|
|
print(f"✔ Profils hebdomadaires : {weekday_path}")
|
|
|
|
print("✔ Graphiques calendrier générés.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|