You've already forked etude_lego_jurassic_world
Analyse des têtes dual-face
This commit is contained in:
133
lib/plots/minifig_head_faces.py
Normal file
133
lib/plots/minifig_head_faces.py
Normal file
@@ -0,0 +1,133 @@
|
||||
"""Visualisations des têtes dual-face."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, List, Tuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.patches import Patch
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
def load_rows(path: Path) -> List[dict]:
|
||||
"""Charge un CSV en mémoire."""
|
||||
return read_rows(path)
|
||||
|
||||
|
||||
def plot_dual_faces_timeline(by_year_path: Path, destination_path: Path) -> None:
|
||||
"""Trace la part annuelle des têtes dual-face."""
|
||||
rows = load_rows(by_year_path)
|
||||
if not rows:
|
||||
return
|
||||
years = [row["year"] for row in rows]
|
||||
totals = [int(row["total_heads"]) for row in rows]
|
||||
duals = [int(row["dual_heads"]) for row in rows]
|
||||
shares = [float(row["share_dual"]) for row in rows]
|
||||
x = np.arange(len(years))
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
ax.bar(x, totals, color="#dddddd", alpha=0.4, label="Têtes totales")
|
||||
ax.plot(x, duals, color="#1f77b4", linewidth=2.0, label="Têtes dual-face (volume)")
|
||||
ax.plot(x, [s * max(totals) for s in shares], color="#d62728", linestyle="--", linewidth=1.6, label="Part dual-face (échelle volume)")
|
||||
ax.set_xticks(x)
|
||||
ax.set_xticklabels(years, rotation=45, ha="right")
|
||||
ax.set_ylabel("Volume de têtes")
|
||||
ax.set_title("Têtes de minifigs : volume et part des dual-face par année")
|
||||
ax.grid(True, linestyle="--", alpha=0.3)
|
||||
ax.legend(loc="upper left", frameon=False)
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
fig.savefig(destination_path, dpi=170)
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def select_top_sets(rows: Iterable[dict], limit: int = 15) -> List[dict]:
|
||||
"""Sélectionne les sets avec le plus de têtes dual-face."""
|
||||
sorted_rows = sorted(
|
||||
rows,
|
||||
key=lambda row: (-int(row["dual_heads"]), -float(row["share_dual"]), row["set_num"]),
|
||||
)
|
||||
return sorted_rows[:limit]
|
||||
|
||||
|
||||
def plot_dual_faces_top_sets(by_set_path: Path, destination_path: Path) -> None:
|
||||
"""Top des sets contenant des têtes dual-face."""
|
||||
rows = load_rows(by_set_path)
|
||||
if not rows:
|
||||
return
|
||||
top_rows = select_top_sets(rows)
|
||||
y = np.arange(len(top_rows))
|
||||
duals = [int(row["dual_heads"]) for row in top_rows]
|
||||
labels = [f"{row['set_num']} · {row['name']} ({row['year']})" for row in top_rows]
|
||||
owned_mask = [row["in_collection"] == "true" for row in top_rows]
|
||||
|
||||
fig, ax = plt.subplots(figsize=(11, 8))
|
||||
for pos, value, owned in zip(y, duals, owned_mask):
|
||||
alpha = 0.9 if owned else 0.45
|
||||
ax.barh(pos, value, color="#9467bd", alpha=alpha)
|
||||
ax.set_yticks(y)
|
||||
ax.set_yticklabels(labels)
|
||||
ax.invert_yaxis()
|
||||
ax.set_xlabel("Nombre de têtes dual-face")
|
||||
ax.set_title("Top des sets avec têtes dual-face")
|
||||
ax.grid(axis="x", linestyle="--", alpha=0.3)
|
||||
legend = [
|
||||
Patch(facecolor="#9467bd", edgecolor="none", alpha=0.9, label="Set possédé"),
|
||||
Patch(facecolor="#9467bd", edgecolor="none", alpha=0.45, label="Set manquant"),
|
||||
]
|
||||
ax.legend(handles=legend, loc="lower right", frameon=False)
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
fig.savefig(destination_path, dpi=170)
|
||||
plt.close(fig)
|
||||
|
||||
|
||||
def select_top_characters(rows: Iterable[dict], limit: int = 12) -> List[dict]:
|
||||
"""Sélectionne les personnages avec le plus de têtes dual-face."""
|
||||
sorted_rows = sorted(
|
||||
rows,
|
||||
key=lambda row: (-int(row["dual_heads"]), -float(row["share_dual"]), row["known_character"]),
|
||||
)
|
||||
return sorted_rows[:limit]
|
||||
|
||||
|
||||
def plot_dual_faces_characters(by_character_path: Path, destination_path: Path) -> None:
|
||||
"""Top des personnages illustrés par des têtes dual-face."""
|
||||
rows = load_rows(by_character_path)
|
||||
if not rows:
|
||||
return
|
||||
top_rows = select_top_characters(rows)
|
||||
y = np.arange(len(top_rows))
|
||||
duals = [int(row["dual_heads"]) for row in top_rows]
|
||||
totals = [int(row["total_heads"]) for row in top_rows]
|
||||
shares = [float(row["share_dual"]) for row in top_rows]
|
||||
labels = [row["known_character"] for row in top_rows]
|
||||
|
||||
fig, ax = plt.subplots(figsize=(11, 8))
|
||||
ax.barh(y, totals, color="#cccccc", alpha=0.4, label="Têtes totales")
|
||||
ax.barh(y, duals, color="#e15759", alpha=0.9, label="Têtes dual-face")
|
||||
for pos, share in zip(y, shares):
|
||||
ax.text(
|
||||
totals[pos] + 0.1,
|
||||
pos,
|
||||
f"{share*100:.1f}%",
|
||||
va="center",
|
||||
ha="left",
|
||||
fontsize=9,
|
||||
color="#333333",
|
||||
)
|
||||
ax.set_yticks(y)
|
||||
ax.set_yticklabels(labels)
|
||||
ax.invert_yaxis()
|
||||
ax.set_xlabel("Nombre de têtes")
|
||||
ax.set_title("Personnages dotés de têtes dual-face")
|
||||
ax.grid(axis="x", linestyle="--", alpha=0.3)
|
||||
ax.legend(loc="lower right", frameon=False)
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
fig.savefig(destination_path, dpi=170)
|
||||
plt.close(fig)
|
||||
194
lib/rebrickable/minifig_head_faces.py
Normal file
194
lib/rebrickable/minifig_head_faces.py
Normal file
@@ -0,0 +1,194 @@
|
||||
"""Détection des têtes de minifigs à plusieurs visages et agrégats associés."""
|
||||
|
||||
import csv
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Sequence
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
DUAL_FACE_KEYWORDS = [
|
||||
"dual sided",
|
||||
"dual-sided",
|
||||
"double sided",
|
||||
"double-sided",
|
||||
"2 sided",
|
||||
"2-sided",
|
||||
"two sided",
|
||||
"two-sided",
|
||||
"dual print",
|
||||
"dual face",
|
||||
"double face",
|
||||
"two faces",
|
||||
"alt face",
|
||||
"alternate face",
|
||||
]
|
||||
|
||||
|
||||
def load_parts_catalog(path: Path) -> Dict[str, dict]:
|
||||
"""Indexe les pièces par référence."""
|
||||
catalog: Dict[str, dict] = {}
|
||||
with path.open() as csv_file:
|
||||
reader = csv.DictReader(csv_file)
|
||||
for row in reader:
|
||||
catalog[row["part_num"]] = row
|
||||
return catalog
|
||||
|
||||
|
||||
def load_sets(path: Path) -> Dict[str, dict]:
|
||||
"""Indexe les sets enrichis par set_num."""
|
||||
sets: Dict[str, dict] = {}
|
||||
for row in read_rows(path):
|
||||
sets[row["set_num"]] = row
|
||||
return sets
|
||||
|
||||
|
||||
def detect_dual_face(name: str) -> str:
|
||||
"""Détecte une tête dual-face via des mots-clés."""
|
||||
lowered = name.lower()
|
||||
for keyword in DUAL_FACE_KEYWORDS:
|
||||
if keyword in lowered:
|
||||
return "true"
|
||||
return "false"
|
||||
|
||||
|
||||
def build_head_faces(
|
||||
minifigs_by_set_path: Path,
|
||||
parts_catalog_path: Path,
|
||||
sets_enriched_path: Path,
|
||||
) -> List[dict]:
|
||||
"""Construit la liste des têtes annotées selon la présence de visages multiples."""
|
||||
heads = read_rows(minifigs_by_set_path)
|
||||
catalog = load_parts_catalog(parts_catalog_path)
|
||||
sets_lookup = load_sets(sets_enriched_path)
|
||||
annotated: List[dict] = []
|
||||
for row in heads:
|
||||
part = catalog[row["part_num"]]
|
||||
set_row = sets_lookup[row["set_num"]]
|
||||
is_dual = detect_dual_face(part["name"])
|
||||
annotated.append(
|
||||
{
|
||||
"set_num": row["set_num"],
|
||||
"set_id": set_row["set_id"],
|
||||
"year": set_row["year"],
|
||||
"name": set_row["name"],
|
||||
"in_collection": set_row["in_collection"],
|
||||
"part_num": row["part_num"],
|
||||
"part_name": part["name"],
|
||||
"fig_num": row["fig_num"],
|
||||
"known_character": row["known_character"],
|
||||
"gender": row["gender"],
|
||||
"is_dual_face": is_dual,
|
||||
}
|
||||
)
|
||||
annotated.sort(key=lambda row: (row["set_num"], row["part_num"]))
|
||||
return annotated
|
||||
|
||||
|
||||
def aggregate_by_year(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par année."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
year_entry = counts.get(row["year"])
|
||||
if year_entry is None:
|
||||
year_entry = {
|
||||
"year": row["year"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[row["year"]] = year_entry
|
||||
year_entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
year_entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for year, entry in counts.items():
|
||||
aggregated.append(
|
||||
{
|
||||
"year": year,
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: int(row["year"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def aggregate_by_set(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par set."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
entry = counts.get(row["set_num"])
|
||||
if entry is None:
|
||||
entry = {
|
||||
"set_num": row["set_num"],
|
||||
"set_id": row["set_id"],
|
||||
"name": row["name"],
|
||||
"year": row["year"],
|
||||
"in_collection": row["in_collection"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[row["set_num"]] = entry
|
||||
entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for entry in counts.values():
|
||||
aggregated.append(
|
||||
{
|
||||
"set_num": entry["set_num"],
|
||||
"set_id": entry["set_id"],
|
||||
"name": entry["name"],
|
||||
"year": entry["year"],
|
||||
"in_collection": entry["in_collection"],
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: (-int(row["dual_heads"]), -float(row["share_dual"]), row["set_num"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def aggregate_by_character(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par personnage connu."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
character = row["known_character"] or "Inconnu"
|
||||
entry = counts.get(character)
|
||||
if entry is None:
|
||||
entry = {
|
||||
"known_character": character,
|
||||
"gender": row["gender"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[character] = entry
|
||||
entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for character, entry in counts.items():
|
||||
aggregated.append(
|
||||
{
|
||||
"known_character": character,
|
||||
"gender": entry["gender"],
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: (-int(row["dual_heads"]), row["known_character"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def write_csv(destination_path: Path, rows: Sequence[dict], fieldnames: Sequence[str]) -> None:
|
||||
"""Écrit un CSV générique."""
|
||||
ensure_parent_dir(destination_path)
|
||||
with destination_path.open("w", newline="") as csv_file:
|
||||
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
Reference in New Issue
Block a user