You've already forked etude_lego_jurassic_world
Analyse des têtes dual-face
This commit is contained in:
194
lib/rebrickable/minifig_head_faces.py
Normal file
194
lib/rebrickable/minifig_head_faces.py
Normal file
@@ -0,0 +1,194 @@
|
||||
"""Détection des têtes de minifigs à plusieurs visages et agrégats associés."""
|
||||
|
||||
import csv
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Sequence
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
DUAL_FACE_KEYWORDS = [
|
||||
"dual sided",
|
||||
"dual-sided",
|
||||
"double sided",
|
||||
"double-sided",
|
||||
"2 sided",
|
||||
"2-sided",
|
||||
"two sided",
|
||||
"two-sided",
|
||||
"dual print",
|
||||
"dual face",
|
||||
"double face",
|
||||
"two faces",
|
||||
"alt face",
|
||||
"alternate face",
|
||||
]
|
||||
|
||||
|
||||
def load_parts_catalog(path: Path) -> Dict[str, dict]:
|
||||
"""Indexe les pièces par référence."""
|
||||
catalog: Dict[str, dict] = {}
|
||||
with path.open() as csv_file:
|
||||
reader = csv.DictReader(csv_file)
|
||||
for row in reader:
|
||||
catalog[row["part_num"]] = row
|
||||
return catalog
|
||||
|
||||
|
||||
def load_sets(path: Path) -> Dict[str, dict]:
|
||||
"""Indexe les sets enrichis par set_num."""
|
||||
sets: Dict[str, dict] = {}
|
||||
for row in read_rows(path):
|
||||
sets[row["set_num"]] = row
|
||||
return sets
|
||||
|
||||
|
||||
def detect_dual_face(name: str) -> str:
|
||||
"""Détecte une tête dual-face via des mots-clés."""
|
||||
lowered = name.lower()
|
||||
for keyword in DUAL_FACE_KEYWORDS:
|
||||
if keyword in lowered:
|
||||
return "true"
|
||||
return "false"
|
||||
|
||||
|
||||
def build_head_faces(
|
||||
minifigs_by_set_path: Path,
|
||||
parts_catalog_path: Path,
|
||||
sets_enriched_path: Path,
|
||||
) -> List[dict]:
|
||||
"""Construit la liste des têtes annotées selon la présence de visages multiples."""
|
||||
heads = read_rows(minifigs_by_set_path)
|
||||
catalog = load_parts_catalog(parts_catalog_path)
|
||||
sets_lookup = load_sets(sets_enriched_path)
|
||||
annotated: List[dict] = []
|
||||
for row in heads:
|
||||
part = catalog[row["part_num"]]
|
||||
set_row = sets_lookup[row["set_num"]]
|
||||
is_dual = detect_dual_face(part["name"])
|
||||
annotated.append(
|
||||
{
|
||||
"set_num": row["set_num"],
|
||||
"set_id": set_row["set_id"],
|
||||
"year": set_row["year"],
|
||||
"name": set_row["name"],
|
||||
"in_collection": set_row["in_collection"],
|
||||
"part_num": row["part_num"],
|
||||
"part_name": part["name"],
|
||||
"fig_num": row["fig_num"],
|
||||
"known_character": row["known_character"],
|
||||
"gender": row["gender"],
|
||||
"is_dual_face": is_dual,
|
||||
}
|
||||
)
|
||||
annotated.sort(key=lambda row: (row["set_num"], row["part_num"]))
|
||||
return annotated
|
||||
|
||||
|
||||
def aggregate_by_year(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par année."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
year_entry = counts.get(row["year"])
|
||||
if year_entry is None:
|
||||
year_entry = {
|
||||
"year": row["year"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[row["year"]] = year_entry
|
||||
year_entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
year_entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for year, entry in counts.items():
|
||||
aggregated.append(
|
||||
{
|
||||
"year": year,
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: int(row["year"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def aggregate_by_set(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par set."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
entry = counts.get(row["set_num"])
|
||||
if entry is None:
|
||||
entry = {
|
||||
"set_num": row["set_num"],
|
||||
"set_id": row["set_id"],
|
||||
"name": row["name"],
|
||||
"year": row["year"],
|
||||
"in_collection": row["in_collection"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[row["set_num"]] = entry
|
||||
entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for entry in counts.values():
|
||||
aggregated.append(
|
||||
{
|
||||
"set_num": entry["set_num"],
|
||||
"set_id": entry["set_id"],
|
||||
"name": entry["name"],
|
||||
"year": entry["year"],
|
||||
"in_collection": entry["in_collection"],
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: (-int(row["dual_heads"]), -float(row["share_dual"]), row["set_num"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def aggregate_by_character(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Agrège les têtes dual-face par personnage connu."""
|
||||
counts: Dict[str, dict] = {}
|
||||
for row in rows:
|
||||
character = row["known_character"] or "Inconnu"
|
||||
entry = counts.get(character)
|
||||
if entry is None:
|
||||
entry = {
|
||||
"known_character": character,
|
||||
"gender": row["gender"],
|
||||
"total_heads": 0,
|
||||
"dual_heads": 0,
|
||||
}
|
||||
counts[character] = entry
|
||||
entry["total_heads"] += 1
|
||||
if row["is_dual_face"] == "true":
|
||||
entry["dual_heads"] += 1
|
||||
aggregated: List[dict] = []
|
||||
for character, entry in counts.items():
|
||||
aggregated.append(
|
||||
{
|
||||
"known_character": character,
|
||||
"gender": entry["gender"],
|
||||
"total_heads": str(entry["total_heads"]),
|
||||
"dual_heads": str(entry["dual_heads"]),
|
||||
"share_dual": f"{entry['dual_heads'] / entry['total_heads']:.4f}",
|
||||
}
|
||||
)
|
||||
aggregated.sort(key=lambda row: (-int(row["dual_heads"]), row["known_character"]))
|
||||
return aggregated
|
||||
|
||||
|
||||
def write_csv(destination_path: Path, rows: Sequence[dict], fieldnames: Sequence[str]) -> None:
|
||||
"""Écrit un CSV générique."""
|
||||
ensure_parent_dir(destination_path)
|
||||
with destination_path.open("w", newline="") as csv_file:
|
||||
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
Reference in New Issue
Block a user