You've already forked etude_lego_jurassic_world
Ajoute l’étape 26 pièces/minifigs
This commit is contained in:
85
lib/plots/minifig_parts_correlation.py
Normal file
85
lib/plots/minifig_parts_correlation.py
Normal file
@@ -0,0 +1,85 @@
|
||||
"""Diagramme de corrélation entre pièces et minifigs par set."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Tuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
def load_points(path: Path, scope: str) -> Tuple[list[int], list[int]]:
|
||||
"""Charge les points (x=num_parts, y=minifig_count) pour un scope donné."""
|
||||
rows = read_rows(path)
|
||||
xs: list[int] = []
|
||||
ys: list[int] = []
|
||||
for row in rows:
|
||||
if row["scope"] != scope:
|
||||
continue
|
||||
xs.append(int(row["num_parts"]))
|
||||
ys.append(int(row["minifig_count"]))
|
||||
return xs, ys
|
||||
|
||||
|
||||
def compute_regression(points: Iterable[Tuple[int, int]]) -> Tuple[float, float]:
|
||||
"""Calcule une régression linéaire simple (pente, ordonnée à l'origine)."""
|
||||
xs = [x for x, _ in points]
|
||||
ys = [y for _, y in points]
|
||||
n = len(xs)
|
||||
mean_x = sum(xs) / n
|
||||
mean_y = sum(ys) / n
|
||||
numerator = 0.0
|
||||
denominator = 0.0
|
||||
for x, y in points:
|
||||
dx = x - mean_x
|
||||
dy = y - mean_y
|
||||
numerator += dx * dy
|
||||
denominator += dx * dx
|
||||
slope = numerator / denominator if denominator != 0 else 0.0
|
||||
intercept = mean_y - slope * mean_x
|
||||
return slope, intercept
|
||||
|
||||
|
||||
def plot_minifig_parts_correlation(correlation_path: Path, destination_path: Path) -> None:
|
||||
"""Trace la corrélation pièces/minifigs pour les sets filtrés vs catalogue global."""
|
||||
filtered_x, filtered_y = load_points(correlation_path, "filtered")
|
||||
catalog_x, catalog_y = load_points(correlation_path, "catalog")
|
||||
filtered_points = list(zip(filtered_x, filtered_y))
|
||||
catalog_points = list(zip(catalog_x, catalog_y))
|
||||
if not filtered_points or not catalog_points:
|
||||
return
|
||||
filtered_slope, filtered_intercept = compute_regression(filtered_points)
|
||||
catalog_slope, catalog_intercept = compute_regression(catalog_points)
|
||||
x_min = min(min(filtered_x), min(catalog_x))
|
||||
x_max = max(max(filtered_x), max(catalog_x))
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 7))
|
||||
ax.scatter(catalog_x, catalog_y, color="#bbbbbb", alpha=0.25, s=18, label="Catalogue global")
|
||||
ax.scatter(filtered_x, filtered_y, color="#1f77b4", alpha=0.8, s=28, label="Thèmes filtrés")
|
||||
ax.plot(
|
||||
[x_min, x_max],
|
||||
[catalog_slope * x_min + catalog_intercept, catalog_slope * x_max + catalog_intercept],
|
||||
color="#555555",
|
||||
linestyle="--",
|
||||
linewidth=1.4,
|
||||
label=f"Tendance globale (pente {catalog_slope:.3f})",
|
||||
)
|
||||
ax.plot(
|
||||
[x_min, x_max],
|
||||
[filtered_slope * x_min + filtered_intercept, filtered_slope * x_max + filtered_intercept],
|
||||
color="#1f77b4",
|
||||
linestyle="-",
|
||||
linewidth=1.6,
|
||||
label=f"Tendance thèmes filtrés (pente {filtered_slope:.3f})",
|
||||
)
|
||||
ax.set_xlabel("Nombre de pièces du set")
|
||||
ax.set_ylabel("Nombre de minifigs")
|
||||
ax.set_title("Corrélation pièces / minifigs")
|
||||
ax.grid(True, linestyle="--", alpha=0.3)
|
||||
ax.legend(loc="upper left")
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
fig.savefig(destination_path, dpi=160)
|
||||
plt.close(fig)
|
||||
Reference in New Issue
Block a user