1

Complète l’étape 26 avec l’évolution minifigs/set

This commit is contained in:
2025-12-02 14:28:11 +01:00
parent f23f54d040
commit c9f1acee4b
6 changed files with 211 additions and 2 deletions

View File

@@ -0,0 +1,45 @@
"""Évolution annuelle du nombre moyen de minifigs par set."""
from pathlib import Path
from typing import List
import matplotlib.pyplot as plt
from lib.filesystem import ensure_parent_dir
from lib.rebrickable.stats import read_rows
def load_minifigs_per_year(path: Path, scope: str) -> List[tuple[int, float]]:
"""Charge les moyennes annuelles pour un scope donné."""
rows = read_rows(path)
values: List[tuple[int, float]] = []
for row in rows:
if row["scope"] != scope:
continue
values.append((int(row["year"]), float(row["average_minifigs_per_set"])))
values.sort(key=lambda item: item[0])
return values
def plot_minifigs_per_set_timeline(path: Path, destination_path: Path) -> None:
"""Trace l'évolution annuelle des minifigs par set (global vs filtré)."""
filtered = load_minifigs_per_year(path, "filtered")
catalog = load_minifigs_per_year(path, "catalog")
if not filtered or not catalog:
return
filtered_years, filtered_values = zip(*filtered)
catalog_years, catalog_values = zip(*catalog)
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(catalog_years, catalog_values, color="#888888", linestyle="--", linewidth=1.6, label="Catalogue global")
ax.plot(filtered_years, filtered_values, color="#1f77b4", linewidth=2.2, marker="o", label="Thèmes filtrés")
ax.set_xlabel("Année")
ax.set_ylabel("Nombre moyen de minifigs par set")
ax.set_title("Évolution des minifigs par set")
ax.grid(True, linestyle="--", alpha=0.3)
ax.legend(loc="upper left")
ensure_parent_dir(destination_path)
fig.tight_layout()
fig.savefig(destination_path, dpi=160)
plt.close(fig)

View File

@@ -80,6 +80,62 @@ def build_correlation_rows(
return rows
def build_minifigs_per_year(
filtered_counts_path: Path,
all_sets_path: Path,
inventories_path: Path,
inventory_minifigs_path: Path,
) -> List[dict]:
"""Calcule le nombre moyen de minifigs par set et par année (filtré vs catalogue)."""
filtered_totals: Dict[int, Dict[str, int]] = {}
with filtered_counts_path.open() as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
year = int(row["year"])
current = filtered_totals.get(year)
if current is None:
filtered_totals[year] = {"minifigs": int(row["minifig_count"]), "sets": 1}
else:
current["minifigs"] += int(row["minifig_count"])
current["sets"] += 1
global_minifigs = build_global_minifig_counts(inventories_path, inventory_minifigs_path)
catalog_totals: Dict[int, Dict[str, int]] = {}
with all_sets_path.open() as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
year = int(row["year"])
current = catalog_totals.get(year)
if current is None:
catalog_totals[year] = {"minifigs": global_minifigs.get(row["set_num"], 0), "sets": 1}
else:
current["minifigs"] += global_minifigs.get(row["set_num"], 0)
current["sets"] += 1
rows: List[dict] = []
for year in sorted(filtered_totals.keys()):
totals = filtered_totals[year]
average = totals["minifigs"] / totals["sets"]
rows.append(
{
"scope": "filtered",
"year": str(year),
"average_minifigs_per_set": f"{average:.3f}",
"set_count": str(totals["sets"]),
}
)
for year in sorted(catalog_totals.keys()):
totals = catalog_totals[year]
average = totals["minifigs"] / totals["sets"]
rows.append(
{
"scope": "catalog",
"year": str(year),
"average_minifigs_per_set": f"{average:.3f}",
"set_count": str(totals["sets"]),
}
)
return rows
def write_correlation_rows(path: Path, rows: Sequence[dict]) -> None:
"""Écrit les lignes de corrélation pièces/minifigs."""
ensure_parent_dir(path)
@@ -91,6 +147,17 @@ def write_correlation_rows(path: Path, rows: Sequence[dict]) -> None:
writer.writerow(row)
def write_minifigs_per_year(path: Path, rows: Sequence[dict]) -> None:
"""Écrit le CSV annuel minifigs / set."""
ensure_parent_dir(path)
fieldnames = ["scope", "year", "average_minifigs_per_set", "set_count"]
with path.open("w", newline="") as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for row in rows:
writer.writerow(row)
def load_correlation_rows(path: Path) -> List[dict]:
"""Charge le CSV de corrélation pièces/minifigs."""
return read_rows(path)