1

Ajoute l’étape 26 pièces/minifigs

This commit is contained in:
2025-12-02 14:24:16 +01:00
parent 71f3509cc8
commit f23f54d040
6 changed files with 318 additions and 0 deletions

View File

@@ -0,0 +1,85 @@
"""Diagramme de corrélation entre pièces et minifigs par set."""
from pathlib import Path
from typing import Iterable, Tuple
import matplotlib.pyplot as plt
from lib.filesystem import ensure_parent_dir
from lib.rebrickable.stats import read_rows
def load_points(path: Path, scope: str) -> Tuple[list[int], list[int]]:
"""Charge les points (x=num_parts, y=minifig_count) pour un scope donné."""
rows = read_rows(path)
xs: list[int] = []
ys: list[int] = []
for row in rows:
if row["scope"] != scope:
continue
xs.append(int(row["num_parts"]))
ys.append(int(row["minifig_count"]))
return xs, ys
def compute_regression(points: Iterable[Tuple[int, int]]) -> Tuple[float, float]:
"""Calcule une régression linéaire simple (pente, ordonnée à l'origine)."""
xs = [x for x, _ in points]
ys = [y for _, y in points]
n = len(xs)
mean_x = sum(xs) / n
mean_y = sum(ys) / n
numerator = 0.0
denominator = 0.0
for x, y in points:
dx = x - mean_x
dy = y - mean_y
numerator += dx * dy
denominator += dx * dx
slope = numerator / denominator if denominator != 0 else 0.0
intercept = mean_y - slope * mean_x
return slope, intercept
def plot_minifig_parts_correlation(correlation_path: Path, destination_path: Path) -> None:
"""Trace la corrélation pièces/minifigs pour les sets filtrés vs catalogue global."""
filtered_x, filtered_y = load_points(correlation_path, "filtered")
catalog_x, catalog_y = load_points(correlation_path, "catalog")
filtered_points = list(zip(filtered_x, filtered_y))
catalog_points = list(zip(catalog_x, catalog_y))
if not filtered_points or not catalog_points:
return
filtered_slope, filtered_intercept = compute_regression(filtered_points)
catalog_slope, catalog_intercept = compute_regression(catalog_points)
x_min = min(min(filtered_x), min(catalog_x))
x_max = max(max(filtered_x), max(catalog_x))
fig, ax = plt.subplots(figsize=(10, 7))
ax.scatter(catalog_x, catalog_y, color="#bbbbbb", alpha=0.25, s=18, label="Catalogue global")
ax.scatter(filtered_x, filtered_y, color="#1f77b4", alpha=0.8, s=28, label="Thèmes filtrés")
ax.plot(
[x_min, x_max],
[catalog_slope * x_min + catalog_intercept, catalog_slope * x_max + catalog_intercept],
color="#555555",
linestyle="--",
linewidth=1.4,
label=f"Tendance globale (pente {catalog_slope:.3f})",
)
ax.plot(
[x_min, x_max],
[filtered_slope * x_min + filtered_intercept, filtered_slope * x_max + filtered_intercept],
color="#1f77b4",
linestyle="-",
linewidth=1.6,
label=f"Tendance thèmes filtrés (pente {filtered_slope:.3f})",
)
ax.set_xlabel("Nombre de pièces du set")
ax.set_ylabel("Nombre de minifigs")
ax.set_title("Corrélation pièces / minifigs")
ax.grid(True, linestyle="--", alpha=0.3)
ax.legend(loc="upper left")
ensure_parent_dir(destination_path)
fig.tight_layout()
fig.savefig(destination_path, dpi=160)
plt.close(fig)