"""Graphique du nombre de minifigs par personnage.""" from pathlib import Path from typing import Dict, List import matplotlib.pyplot as plt from matplotlib.patches import Patch from lib.filesystem import ensure_parent_dir from lib.milestones import load_milestones from lib.plots.gender_palette import GENDER_COLORS, GENDER_LABELS from lib.rebrickable.stats import read_rows def load_counts(path: Path) -> List[dict]: """Charge le CSV des comptes par personnage.""" return read_rows(path) def load_presence(path: Path) -> List[dict]: """Charge le CSV de présence par année/personnage.""" return read_rows(path) def load_new_characters(path: Path) -> List[dict]: """Charge le CSV des personnages introduits par année.""" return read_rows(path) def load_variations_and_totals(path: Path) -> List[dict]: """Charge le CSV comparatif variations/total par personnage.""" return read_rows(path) def plot_minifigs_per_character(counts_path: Path, destination_path: Path) -> None: """Trace un diagramme en barres horizontales du nombre de minifigs par personnage.""" rows = load_counts(counts_path) characters = [row["known_character"] for row in rows] counts = [int(row["minifig_count"]) for row in rows] genders = [row.get("gender", "") for row in rows] colors = [GENDER_COLORS.get(gender.strip().lower(), GENDER_COLORS["unknown"]) for gender in genders] positions = list(range(len(rows))) height = max(6, len(rows) * 0.22) fig, ax = plt.subplots(figsize=(12, height)) bars = ax.barh(positions, counts, color=colors, edgecolor="#0d0d0d", linewidth=0.6) ax.set_yticks(positions) ax.set_yticklabels(characters) ax.invert_yaxis() ax.set_xlabel("Nombre de minifigs distinctes") ax.set_title("Minifigs par personnage (thèmes filtrés)") ax.grid(True, axis="x", linestyle="--", alpha=0.25) max_value = max(counts) if counts else 0 ax.set_xlim(0, max_value + 1) for index, bar in enumerate(bars): value = counts[index] ax.text(value + 0.1, bar.get_y() + bar.get_height() / 2, str(value), va="center", fontsize=8) legend_entries = [] seen = set() for gender in genders: normalized = gender.strip().lower() if normalized in seen: continue seen.add(normalized) legend_entries.append( Patch( facecolor=GENDER_COLORS.get(normalized, GENDER_COLORS["unknown"]), edgecolor="#0d0d0d", linewidth=0.6, label=GENDER_LABELS.get(normalized, "Inconnu"), ) ) if legend_entries: ax.legend(handles=legend_entries, title="Genre", loc="lower right") ensure_parent_dir(destination_path) fig.tight_layout() fig.savefig(destination_path, dpi=160) plt.close(fig) def plot_character_variations_vs_total(counts_path: Path, destination_path: Path) -> None: """Superpose le total de minifigs et leurs variations distinctes par personnage.""" rows = load_variations_and_totals(counts_path) if not rows: return characters = [row["known_character"] for row in rows] variation_counts = [int(row["variation_count"]) for row in rows] total_counts = [int(row["total_minifigs"]) for row in rows] genders = [row.get("gender", "") for row in rows] gender_colors = [GENDER_COLORS.get(gender.strip().lower(), GENDER_COLORS["unknown"]) for gender in genders] positions = list(range(len(rows))) height = max(6, len(rows) * 0.24) background_color = "#d7d7e0" fig, ax = plt.subplots(figsize=(12.4, height)) bars_total = ax.barh( positions, total_counts, color=background_color, edgecolor="#0d0d0d", linewidth=0.6, height=0.6, label="Total de minifigs", ) bars_variations = ax.barh( positions, variation_counts, color=gender_colors, edgecolor="#0d0d0d", linewidth=0.8, height=0.36, label="Variations distinctes", ) ax.set_yticks(positions) ax.set_yticklabels(characters) ax.invert_yaxis() ax.set_xlabel("Nombre de minifigs") ax.set_title("Variations et total de minifigs par personnage (hors figurants)") ax.grid(True, axis="x", linestyle="--", alpha=0.25) max_value = max(total_counts) if total_counts else 0 ax.set_xlim(0, max_value + 1) for index, bar in enumerate(bars_total): value = total_counts[index] ax.text(value + 0.12, bar.get_y() + bar.get_height() / 2, str(value), va="center", fontsize=8, color="#1a1a1a") for index, bar in enumerate(bars_variations): value = variation_counts[index] ax.text(value + 0.12, bar.get_y() + bar.get_height() / 2, str(value), va="center", fontsize=8, color="#0d0d0d") legend_entries = [ Patch(facecolor=background_color, edgecolor="#0d0d0d", linewidth=0.6, label="Total de minifigs"), Patch( facecolor=GENDER_COLORS["unknown"], edgecolor="#0d0d0d", linewidth=0.8, label="Variations distinctes (couleur = genre)", ), ] seen = set() for gender, color in zip(genders, gender_colors): normalized = gender.strip().lower() if normalized in seen: continue seen.add(normalized) legend_entries.append( Patch( facecolor=color, edgecolor="#0d0d0d", linewidth=0.6, label=GENDER_LABELS.get(normalized, "Inconnu"), ) ) ax.legend(handles=legend_entries, loc="lower right") ensure_parent_dir(destination_path) fig.tight_layout() fig.savefig(destination_path, dpi=160) plt.close(fig) def plot_character_year_presence(presence_path: Path, destination_path: Path) -> None: """Trace une heatmap indiquant le nombre de minifigs par personnage et par année.""" rows = load_presence(presence_path) if not rows: return years = sorted({int(row["year"]) for row in rows}) characters = sorted( {row["known_character"] for row in rows}, key=lambda name: ( -sum(int(r["minifig_count"]) for r in rows if r["known_character"] == name), name, ), ) matrix = [] for character in characters: row_values = [] for year in years: count = next( (r["minifig_count"] for r in rows if r["known_character"] == character and int(r["year"]) == year), "0", ) row_values.append(int(count)) matrix.append(row_values) height = max(5, len(characters) * 0.35) fig, ax = plt.subplots(figsize=(12, height)) cax = ax.imshow(matrix, aspect="auto", cmap="Greens", interpolation="nearest") ax.set_xticks(range(len(years))) ax.set_xticklabels(years, rotation=45, ha="right") ax.set_yticks(range(len(characters))) ax.set_yticklabels(characters) ax.set_xlabel("Année") ax.set_ylabel("Personnage") ax.set_title("Nombre de minifigs par personnage et par année (hors figurants)") for i, character in enumerate(characters): for j, year in enumerate(years): value = matrix[i][j] if value == 1: ax.text(j, i, "●", ha="center", va="center", color="#0d0d0d", fontsize=7) elif value > 1: ax.text(j, i, str(value), ha="center", va="center", color="#0d0d0d", fontsize=7) fig.colorbar(cax, ax=ax, fraction=0.046, pad=0.04, label="Nombre de minifigs") ensure_parent_dir(destination_path) fig.tight_layout() fig.savefig(destination_path, dpi=160) plt.close(fig) def plot_new_characters_per_year( counts_path: Path, milestones_path: Path, destination_path: Path, start_year: int, end_year: int, ) -> None: """Trace un diagramme en barres du nombre de nouveaux personnages introduits par an.""" rows = load_new_characters(counts_path) if not rows: return counts = {int(row["year"]): int(row["new_characters"]) for row in rows} years = list(range(start_year, end_year + 1)) values = [counts.get(year, 0) for year in years] fig_width = max(8.5, len(years) * 0.45 + 2.5) fig, ax = plt.subplots(figsize=(fig_width, 5.4)) bars = ax.bar(years, values, color="#1f77b4", edgecolor="#0d0d0d", linewidth=0.7) ax.set_xlabel("Année") ax.set_ylabel("Nouveaux personnages") ax.set_title("Personnages introduits par an (hors figurants)") ax.grid(axis="y", linestyle="--", alpha=0.3) ax.set_xticks(years) ax.set_xticklabels(years, rotation=45, ha="right") ax.set_xlim(start_year - 0.6, end_year + 0.6) y_max = max(values) if values else 0 upper_limit = 20 ax.set_ylim(0, upper_limit) for bar, value in zip(bars, values): if value == 0: continue ax.text(bar.get_x() + bar.get_width() / 2, value + 0.05, str(value), ha="center", va="bottom", fontsize=8) milestones = load_milestones(milestones_path) if milestones: milestones_in_range = sorted( [m for m in milestones if start_year <= m["year"] <= end_year], key=lambda m: (m["year"], m["description"]), ) offset_step = 0.25 offset_map: Dict[int, int] = {} top_limit = ax.get_ylim()[1] label_y = top_limit * 0.96 for milestone in milestones_in_range: year = milestone["year"] count_for_year = offset_map.get(year, 0) offset_map[year] = count_for_year + 1 horizontal_offset = offset_step * (count_for_year // 2 + 1) if count_for_year % 2 == 1: horizontal_offset *= -1 text_x = year + horizontal_offset ax.axvline(year, color="#d62728", linestyle="--", linewidth=1, alpha=0.65, zorder=1) ax.text( text_x, label_y, milestone["description"], rotation=90, verticalalignment="top", horizontalalignment="center", fontsize=8, color="#d62728", ) ensure_parent_dir(destination_path) fig.tight_layout() fig.savefig(destination_path, dpi=160) plt.close(fig)