114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
"""Extraction des couleurs de têtes de minifigs."""
|
|
|
|
import csv
|
|
from pathlib import Path
|
|
from typing import Dict, Iterable, List, Set, Tuple
|
|
|
|
from lib.rebrickable.colors_by_set import build_colors_lookup
|
|
from lib.rebrickable.stats import read_rows
|
|
|
|
|
|
HEAD_CATEGORIES = {"59"}
|
|
|
|
|
|
def load_parts_filtered(path: Path) -> List[dict]:
|
|
"""Charge parts_filtered.csv en mémoire."""
|
|
return read_rows(path)
|
|
|
|
|
|
def build_head_part_set(parts_catalog_path: Path) -> Set[str]:
|
|
"""Sélectionne les références de têtes via leur catégorie."""
|
|
head_parts: Set[str] = set()
|
|
with parts_catalog_path.open() as parts_file:
|
|
reader = csv.DictReader(parts_file)
|
|
for row in reader:
|
|
if row["part_cat_id"] in HEAD_CATEGORIES:
|
|
head_parts.add(row["part_num"])
|
|
return head_parts
|
|
|
|
|
|
def aggregate_head_colors_by_set(
|
|
parts_rows: Iterable[dict],
|
|
head_parts: Set[str],
|
|
colors_lookup: Dict[Tuple[str, str], str],
|
|
) -> List[dict]:
|
|
"""Agrège les quantités de têtes par set et par couleur (hors rechanges)."""
|
|
aggregates: Dict[Tuple[str, str, str, str], dict] = {}
|
|
for row in parts_rows:
|
|
if row["part_num"] not in head_parts:
|
|
continue
|
|
if row["is_spare"] == "true":
|
|
continue
|
|
key = (row["set_num"], row["set_id"], row["year"], row["color_rgb"])
|
|
existing = aggregates.get(key)
|
|
if existing is None:
|
|
aggregates[key] = {
|
|
"set_num": row["set_num"],
|
|
"set_id": row["set_id"],
|
|
"year": row["year"],
|
|
"color_rgb": row["color_rgb"],
|
|
"is_translucent": row["is_translucent"],
|
|
"color_name": colors_lookup[(row["color_rgb"], row["is_translucent"])],
|
|
"quantity": 0,
|
|
}
|
|
existing = aggregates[key]
|
|
existing["quantity"] += int(row["quantity_in_set"])
|
|
results = list(aggregates.values())
|
|
results.sort(key=lambda r: (r["set_num"], r["color_name"], r["is_translucent"]))
|
|
return results
|
|
|
|
|
|
def aggregate_head_colors_by_year(rows: Iterable[dict]) -> List[dict]:
|
|
"""Regroupe les têtes par année et par couleur."""
|
|
aggregates: Dict[Tuple[str, str, str], dict] = {}
|
|
for row in rows:
|
|
key = (row["year"], row["color_rgb"], row["is_translucent"])
|
|
existing = aggregates.get(key)
|
|
if existing is None:
|
|
aggregates[key] = {
|
|
"year": row["year"],
|
|
"color_rgb": row["color_rgb"],
|
|
"is_translucent": row["is_translucent"],
|
|
"color_name": row["color_name"],
|
|
"quantity": 0,
|
|
}
|
|
existing = aggregates[key]
|
|
existing["quantity"] += int(row["quantity"])
|
|
results = list(aggregates.values())
|
|
results.sort(key=lambda r: (int(r["year"]), r["color_name"], r["is_translucent"]))
|
|
return results
|
|
|
|
|
|
def write_head_colors_by_set(path: Path, rows: Iterable[dict]) -> None:
|
|
"""Écrit l'agrégat par set."""
|
|
fieldnames = [
|
|
"set_num",
|
|
"set_id",
|
|
"year",
|
|
"color_rgb",
|
|
"is_translucent",
|
|
"color_name",
|
|
"quantity",
|
|
]
|
|
with path.open("w", newline="") as csv_file:
|
|
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
|
writer.writeheader()
|
|
for row in rows:
|
|
writer.writerow(row)
|
|
|
|
|
|
def write_head_colors_by_year(path: Path, rows: Iterable[dict]) -> None:
|
|
"""Écrit l'agrégat par année."""
|
|
fieldnames = [
|
|
"year",
|
|
"color_rgb",
|
|
"is_translucent",
|
|
"color_name",
|
|
"quantity",
|
|
]
|
|
with path.open("w", newline="") as csv_file:
|
|
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
|
writer.writeheader()
|
|
for row in rows:
|
|
writer.writerow(row)
|