Graphiques de corrélations binaires simples
|
After Width: | Height: | Size: 206 KiB |
|
After Width: | Height: | Size: 192 KiB |
|
After Width: | Height: | Size: 135 KiB |
|
After Width: | Height: | Size: 184 KiB |
|
After Width: | Height: | Size: 164 KiB |
|
After Width: | Height: | Size: 216 KiB |
|
After Width: | Height: | Size: 185 KiB |
|
After Width: | Height: | Size: 176 KiB |
|
After Width: | Height: | Size: 219 KiB |
|
After Width: | Height: | Size: 199 KiB |
|
After Width: | Height: | Size: 129 KiB |
|
After Width: | Height: | Size: 180 KiB |
|
After Width: | Height: | Size: 153 KiB |
|
After Width: | Height: | Size: 209 KiB |
|
After Width: | Height: | Size: 150 KiB |
|
After Width: | Height: | Size: 120 KiB |
|
After Width: | Height: | Size: 90 KiB |
|
After Width: | Height: | Size: 154 KiB |
|
After Width: | Height: | Size: 192 KiB |
|
After Width: | Height: | Size: 194 KiB |
|
After Width: | Height: | Size: 182 KiB |
|
After Width: | Height: | Size: 127 KiB |
|
After Width: | Height: | Size: 174 KiB |
|
After Width: | Height: | Size: 153 KiB |
|
After Width: | Height: | Size: 206 KiB |
|
After Width: | Height: | Size: 146 KiB |
|
After Width: | Height: | Size: 205 KiB |
|
After Width: | Height: | Size: 179 KiB |
@ -1,7 +1,66 @@
|
||||
# Corrélations binaires
|
||||
|
||||
Cette étape regroupe l'ensemble des scripts dédiés aux corrélations et comparaisons directes entre variables.
|
||||
Chaque figure déposée dans `figures/` possède son CSV compagnon exporté dans le dossier `data/` au même emplacement.
|
||||
## Superpositions simples
|
||||
|
||||
```shell
|
||||
python "docs/04 - Corrélations binaires/scripts/plot_pairwise_time_series.py"
|
||||
```
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
## Nuages de points
|
||||
|
||||
```shell
|
||||
python "docs/04 - Corrélations binaires/scripts/plot_all_pairwise_scatter.py"
|
||||
|
||||
@ -0,0 +1,169 @@
|
||||
# scripts/plot_pairwise_time_series.py
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
|
||||
PROJECT_ROOT = Path(__file__).resolve().parents[3]
|
||||
if str(PROJECT_ROOT) not in sys.path:
|
||||
sys.path.insert(0, str(PROJECT_ROOT))
|
||||
|
||||
from meteo.dataset import load_raw_csv
|
||||
from meteo.plots import (
|
||||
PlotChoice,
|
||||
PlotStyle,
|
||||
plot_dual_time_series,
|
||||
recommended_style,
|
||||
resample_series_for_plot,
|
||||
)
|
||||
from meteo.variables import Variable, VARIABLES, VARIABLES_BY_KEY, iter_variable_pairs
|
||||
|
||||
|
||||
CSV_PATH = Path("data/weather_minutely.csv")
|
||||
DOC_DIR = Path(__file__).resolve().parent.parent
|
||||
OUTPUT_DIR = DOC_DIR / "figures" / "pairwise_timeseries"
|
||||
|
||||
|
||||
def _select_variables(keys: list[str] | None) -> list[Variable]:
|
||||
if not keys:
|
||||
return list(VARIABLES)
|
||||
missing = [key for key in keys if key not in VARIABLES_BY_KEY]
|
||||
if missing:
|
||||
raise KeyError(f"Variables inconnues : {', '.join(missing)}")
|
||||
return [VARIABLES_BY_KEY[key] for key in keys]
|
||||
|
||||
|
||||
def _aggregation_label(choice_a: PlotChoice, choice_b: PlotChoice, freq: str) -> str:
|
||||
agg_labels = set()
|
||||
for choice in (choice_a, choice_b):
|
||||
base = "moyenne"
|
||||
if isinstance(choice.agg, str):
|
||||
if choice.agg == "sum":
|
||||
base = "somme"
|
||||
elif choice.agg == "median":
|
||||
base = "médiane"
|
||||
elif getattr(choice.agg, "__name__", "") == "_circular_mean_deg":
|
||||
base = "moyenne circulaire"
|
||||
agg_labels.add(base)
|
||||
if len(agg_labels) == 1:
|
||||
label = agg_labels.pop()
|
||||
else:
|
||||
label = "agrégations mixtes"
|
||||
return f"{label} {freq}"
|
||||
|
||||
|
||||
def main(argv: list[str] | None = None) -> None:
|
||||
parser = argparse.ArgumentParser(description="Superpose les séries temporelles de toutes les paires de variables.")
|
||||
parser.add_argument(
|
||||
"--only",
|
||||
nargs="*",
|
||||
help="Clés de variables à inclure (par défaut : toutes).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Limiter aux N derniers jours (par défaut : période complète).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--style",
|
||||
choices=[style.value for style in PlotStyle],
|
||||
help="Style à imposer à toutes les variables (par défaut : style recommandé par variable).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resample",
|
||||
help="Fréquence pandas pour l'agrégation temporelle (par défaut : calcul automatique).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-points",
|
||||
type=int,
|
||||
default=420,
|
||||
help="Nombre de points cible après agrégation automatique (par défaut : 420).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default=OUTPUT_DIR,
|
||||
help="Dossier où stocker les figures.",
|
||||
)
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
if not CSV_PATH.exists():
|
||||
print(f"⚠ Fichier introuvable : {CSV_PATH}")
|
||||
return
|
||||
|
||||
df = load_raw_csv(CSV_PATH)
|
||||
if args.days is not None:
|
||||
end = df.index.max()
|
||||
start = end - pd.Timedelta(days=args.days)
|
||||
df = df.loc[start:end]
|
||||
|
||||
variables = _select_variables(args.only)
|
||||
pairs = [(vx, vy) for (vx, vy) in iter_variable_pairs() if vx in variables and vy in variables]
|
||||
if not pairs:
|
||||
print("⚠ Aucune paire à tracer.")
|
||||
return
|
||||
|
||||
output_dir: Path = args.output_dir
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Dataset chargé ({len(df)} lignes) → génération de {len(pairs)} paires.")
|
||||
|
||||
for var_a, var_b in pairs:
|
||||
missing: list[str] = []
|
||||
for col in (var_a.column, var_b.column):
|
||||
if col not in df.columns:
|
||||
missing.append(col)
|
||||
if missing:
|
||||
print(f"⚠ Colonnes absentes, on passe : {', '.join(missing)}")
|
||||
continue
|
||||
|
||||
series_a = df[var_a.column].dropna()
|
||||
series_b = df[var_b.column].dropna()
|
||||
if series_a.empty or series_b.empty:
|
||||
print(f"⚠ Données insuffisantes pour {var_a.key} / {var_b.key}, on passe.")
|
||||
continue
|
||||
|
||||
choice_a = recommended_style(var_a, args.style)
|
||||
choice_b = recommended_style(var_b, args.style)
|
||||
|
||||
aggregated_a, freq_used = resample_series_for_plot(
|
||||
series_a,
|
||||
variable=var_a,
|
||||
freq=args.resample,
|
||||
target_points=args.max_points,
|
||||
)
|
||||
aggregated_b, _ = resample_series_for_plot(
|
||||
series_b,
|
||||
variable=var_b,
|
||||
freq=freq_used,
|
||||
target_points=args.max_points,
|
||||
)
|
||||
if aggregated_a.empty or aggregated_b.empty:
|
||||
print(f"⚠ Pas de points après agrégation pour {var_a.key} / {var_b.key}.")
|
||||
continue
|
||||
|
||||
output_path = output_dir / f"timeseries_{var_a.key}_vs_{var_b.key}.png"
|
||||
label_freq = _aggregation_label(choice_a, choice_b, freq_used)
|
||||
|
||||
print(f"→ {var_a.key} vs {var_b.key} ({freq_used}) → {output_path}")
|
||||
plot_dual_time_series(
|
||||
aggregated_a,
|
||||
var_a,
|
||||
choice_a,
|
||||
aggregated_b,
|
||||
var_b,
|
||||
choice_b,
|
||||
output_path=output_path,
|
||||
title=f"{var_a.label} et {var_b.label} — évolution temporelle",
|
||||
annotate_freq=label_freq,
|
||||
)
|
||||
|
||||
print("✔ Superpositions temporelles générées.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -26,6 +26,7 @@ from .basic_series import (
|
||||
PlotChoice,
|
||||
PlotStyle,
|
||||
plot_basic_series,
|
||||
plot_dual_time_series,
|
||||
recommended_style,
|
||||
resample_series_for_plot,
|
||||
)
|
||||
@ -64,6 +65,7 @@ __all__ = [
|
||||
"PlotChoice",
|
||||
"PlotStyle",
|
||||
"plot_basic_series",
|
||||
"plot_dual_time_series",
|
||||
"recommended_style",
|
||||
"resample_series_for_plot",
|
||||
"plot_daylight_hours",
|
||||
|
||||
@ -23,6 +23,7 @@ __all__ = [
|
||||
"recommended_style",
|
||||
"resample_series_for_plot",
|
||||
"plot_basic_series",
|
||||
"plot_dual_time_series",
|
||||
]
|
||||
|
||||
|
||||
@ -145,6 +146,11 @@ def _series_color(variable: Variable) -> str:
|
||||
return PALETTE.get(variable.column, DEFAULT_COLOR)
|
||||
|
||||
|
||||
def _format_label(var: Variable) -> str:
|
||||
unit_text = f" ({var.unit})" if var.unit else ""
|
||||
return f"{var.label}{unit_text}"
|
||||
|
||||
|
||||
def resample_series_for_plot(
|
||||
series: pd.Series,
|
||||
*,
|
||||
@ -230,3 +236,115 @@ def plot_basic_series(
|
||||
|
||||
export_plot_dataset(series.to_frame(name=variable.column), output_path)
|
||||
return output_path.resolve()
|
||||
|
||||
|
||||
def _draw_series(ax: plt.Axes, series: pd.Series, *, choice: PlotChoice, color: str, label: str):
|
||||
x = mdates.date2num(series.index)
|
||||
values = series.to_numpy(dtype=float)
|
||||
|
||||
if choice.style is PlotStyle.LINE:
|
||||
return ax.plot_date(x, values, "-", linewidth=1.8, color=color, label=label)
|
||||
if choice.style is PlotStyle.AREA:
|
||||
ax.fill_between(x, values, step="mid", color=color, alpha=0.15)
|
||||
return ax.plot_date(x, values, "-", linewidth=1.6, color=color, label=label)
|
||||
if choice.style is PlotStyle.BAR:
|
||||
width = _infer_bar_width(series.index) * 0.9
|
||||
return ax.bar(x, values, width=width, color=color, edgecolor=color, linewidth=0.5, alpha=0.75, label=label)
|
||||
if choice.style is PlotStyle.SCATTER:
|
||||
return ax.scatter(x, values, s=16, color=color, alpha=0.9, label=label)
|
||||
raise ValueError(f"Style inconnu : {choice.style}")
|
||||
|
||||
|
||||
def plot_dual_time_series(
|
||||
series_left: pd.Series,
|
||||
variable_left: Variable,
|
||||
choice_left: PlotChoice,
|
||||
series_right: pd.Series,
|
||||
variable_right: Variable,
|
||||
choice_right: PlotChoice,
|
||||
*,
|
||||
output_path: str | Path,
|
||||
title: str,
|
||||
annotate_freq: str | None = None,
|
||||
) -> Path:
|
||||
"""Superpose deux séries temporelles (axes Y séparés) avec styles adaptés."""
|
||||
|
||||
_ensure_datetime_index(series_left)
|
||||
_ensure_datetime_index(series_right)
|
||||
|
||||
if series_left.empty or series_right.empty:
|
||||
raise ValueError("Les séries à tracer ne peuvent pas être vides.")
|
||||
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
color_left = _series_color(variable_left)
|
||||
color_right = _series_color(variable_right)
|
||||
|
||||
fig, ax_left = plt.subplots(figsize=(11, 4.6))
|
||||
ax_right = ax_left.twinx()
|
||||
|
||||
artists_left = _draw_series(
|
||||
ax_left,
|
||||
series_left,
|
||||
choice=choice_left,
|
||||
color=color_left,
|
||||
label=_format_label(variable_left),
|
||||
)
|
||||
artists_right = _draw_series(
|
||||
ax_right,
|
||||
series_right,
|
||||
choice=choice_right,
|
||||
color=color_right,
|
||||
label=_format_label(variable_right),
|
||||
)
|
||||
|
||||
ax_left.set_ylabel(_format_label(variable_left), color=color_left)
|
||||
ax_right.set_ylabel(_format_label(variable_right), color=color_right)
|
||||
ax_left.tick_params(axis="y", labelcolor=color_left)
|
||||
ax_right.tick_params(axis="y", labelcolor=color_right)
|
||||
|
||||
_format_time_axis(ax_left)
|
||||
ax_left.grid(True, color="#e0e0e0", linewidth=0.8, alpha=0.7)
|
||||
ax_left.margins(x=0.02, y=0.05)
|
||||
ax_right.margins(x=0.02, y=0.05)
|
||||
ax_left.set_title(title)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
for artist in artists_left if isinstance(artists_left, list) else [artists_left]:
|
||||
handles.append(artist)
|
||||
labels.append(artist.get_label())
|
||||
if isinstance(artists_right, list):
|
||||
handles.extend(artists_right)
|
||||
labels.extend([a.get_label() for a in artists_right])
|
||||
else:
|
||||
handles.append(artists_right)
|
||||
labels.append(artists_right.get_label())
|
||||
|
||||
ax_left.legend(handles, labels, loc="upper left")
|
||||
|
||||
if annotate_freq:
|
||||
ax_left.text(
|
||||
0.99,
|
||||
0.02,
|
||||
f"Agrégation : {annotate_freq}",
|
||||
transform=ax_left.transAxes,
|
||||
ha="right",
|
||||
va="bottom",
|
||||
fontsize=9,
|
||||
color="#555555",
|
||||
)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
export_plot_dataset(
|
||||
pd.concat(
|
||||
{variable_left.column: series_left, variable_right.column: series_right},
|
||||
axis=1,
|
||||
),
|
||||
output_path,
|
||||
)
|
||||
return output_path.resolve()
|
||||
|
||||