1

Ajout de couleurs en fonction du temps

Utilisation de graphiques radiaux pour la représentation de la direction du vent
This commit is contained in:
Richard Dern 2025-11-17 21:21:44 +01:00
parent 8cf79d672d
commit b72349a369
22 changed files with 132 additions and 9 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 317 KiB

After

Width:  |  Height:  |  Size: 529 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 240 KiB

After

Width:  |  Height:  |  Size: 430 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 380 KiB

After

Width:  |  Height:  |  Size: 623 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 KiB

After

Width:  |  Height:  |  Size: 414 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 344 KiB

After

Width:  |  Height:  |  Size: 400 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 216 KiB

After

Width:  |  Height:  |  Size: 383 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 238 KiB

After

Width:  |  Height:  |  Size: 395 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 303 KiB

After

Width:  |  Height:  |  Size: 497 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 180 KiB

After

Width:  |  Height:  |  Size: 359 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 279 KiB

After

Width:  |  Height:  |  Size: 458 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 286 KiB

After

Width:  |  Height:  |  Size: 454 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 222 KiB

After

Width:  |  Height:  |  Size: 349 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 377 KiB

After

Width:  |  Height:  |  Size: 503 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 197 KiB

After

Width:  |  Height:  |  Size: 374 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 200 KiB

After

Width:  |  Height:  |  Size: 222 KiB

View File

@ -2,8 +2,10 @@
from __future__ import annotations
from pathlib import Path
from typing import Sequence
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
import numpy as np
import pandas as pd
@ -17,12 +19,19 @@ def plot_scatter_pair(
output_path: str | Path,
*,
sample_step: int = 10,
color_by_time: bool = True,
cmap: str = "viridis",
) -> Path:
"""
Trace un nuage de points (scatter) pour une paire de variables.
- On sous-échantillonne les données avec `sample_step` (par exemple,
1 point sur 10) pour éviter un graphique illisible.
- Si `color_by_time` vaut True et que l'index est temporel, les points
sont colorés du plus ancien (sombre) au plus récent (clair).
- Lorsque l'axe Y correspond à la direction du vent, on bascule sur
un graphique polaire plus adapté (0° = Nord, sens horaire) avec
un rayon normalisé : centre = valeur minimale, bord = maximale.
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
@ -33,14 +42,128 @@ def plot_scatter_pair(
if sample_step > 1:
df_pair = df_pair.iloc[::sample_step, :]
plt.figure()
plt.scatter(df_pair[var_x.column], df_pair[var_y.column], s=5, alpha=0.5)
plt.xlabel(f"{var_x.label} ({var_x.unit})")
plt.ylabel(f"{var_y.label} ({var_y.unit})")
plt.title(f"{var_y.label} en fonction de {var_x.label}")
plt.tight_layout()
plt.savefig(output_path, dpi=150)
plt.close()
use_polar = var_y.key == "wind_direction"
if use_polar:
fig, ax = plt.subplots(subplot_kw={"projection": "polar"})
else:
fig, ax = plt.subplots()
scatter_kwargs: dict = {"s": 5, "alpha": 0.5}
colorbar_meta: dict | None = None
if color_by_time and isinstance(df_pair.index, pd.DatetimeIndex):
idx = df_pair.index
timestamps = idx.view("int64")
time_span = np.ptp(timestamps)
norm = (
Normalize(vmin=timestamps.min(), vmax=timestamps.max())
if time_span > 0
else None
)
scatter_kwargs |= {"c": timestamps, "cmap": cmap}
if norm is not None:
scatter_kwargs["norm"] = norm
colorbar_meta = {
"index": idx,
"timestamps": timestamps,
"time_span": time_span,
}
if use_polar:
theta = np.deg2rad(df_pair[var_y.column].to_numpy(dtype=float) % 360.0)
radius_raw = df_pair[var_x.column].to_numpy(dtype=float)
if radius_raw.size == 0:
radius = radius_raw
value_min = value_max = float("nan")
else:
value_min = float(np.min(radius_raw))
value_max = float(np.max(radius_raw))
if np.isclose(value_min, value_max):
radius = np.zeros_like(radius_raw)
else:
radius = (radius_raw - value_min) / (value_max - value_min)
scatter = ax.scatter(theta, radius, **scatter_kwargs)
cardinal_angles = np.deg2rad(np.arange(0, 360, 45))
cardinal_labels = ["N", "NE", "E", "SE", "S", "SO", "O", "NO"]
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
ax.set_xticks(cardinal_angles)
ax.set_xticklabels(cardinal_labels)
if radius_raw.size > 0:
if np.isclose(value_min, value_max):
radial_positions = [0.0]
else:
radial_positions = np.linspace(0.0, 1.0, num=5).tolist()
if np.isclose(value_min, value_max):
actual_values = [value_min]
else:
actual_values = [
value_min + pos * (value_max - value_min)
for pos in radial_positions
]
ax.set_yticks(radial_positions)
ax.set_yticklabels([f"{val:.1f}" for val in actual_values])
ax.set_rlabel_position(225)
ax.set_ylim(0.0, 1.0)
unit_suffix = f" {var_x.unit}" if var_x.unit else ""
ax.text(
0.5,
-0.1,
f"Centre = {value_min:.1f}{unit_suffix}, bord = {value_max:.1f}{unit_suffix}",
transform=ax.transAxes,
ha="center",
va="top",
fontsize=8,
)
radial_label = f"{var_x.label} ({var_x.unit})" if var_x.unit else var_x.label
ax.set_ylabel(radial_label, labelpad=20)
else:
scatter = ax.scatter(
df_pair[var_x.column],
df_pair[var_y.column],
**scatter_kwargs,
)
if colorbar_meta is not None:
cbar = fig.colorbar(scatter, ax=ax)
idx = colorbar_meta["index"]
timestamps = colorbar_meta["timestamps"]
time_span = colorbar_meta["time_span"]
def _format_tick_label(ts: pd.Timestamp) -> str:
base = f"{ts.strftime('%Y-%m-%d')}\n{ts.strftime('%H:%M')}"
tz_name = ts.tzname()
return f"{base} ({tz_name})" if tz_name else base
if time_span > 0:
tick_datetimes = pd.date_range(start=idx.min(), end=idx.max(), periods=5)
tick_positions = tick_datetimes.view("int64")
tick_labels = [_format_tick_label(ts) for ts in tick_datetimes]
cbar.set_ticks(tick_positions)
cbar.set_ticklabels(tick_labels)
else:
cbar.set_ticks([timestamps[0]])
ts = idx[0]
cbar.set_ticklabels([_format_tick_label(ts)])
cbar.set_label("Temps (ancien → récent)")
if use_polar:
ax.set_title(f"{var_y.label} en fonction de {var_x.label}")
else:
ax.set_xlabel(f"{var_x.label} ({var_x.unit})")
ax.set_ylabel(f"{var_y.label} ({var_y.unit})")
ax.set_title(f"{var_y.label} en fonction de {var_x.label}")
fig.tight_layout()
fig.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
@ -146,4 +269,4 @@ def plot_correlation_heatmap(
plt.savefig(output_path, dpi=150)
plt.close(fig)
return output_path.resolve()
return output_path.resolve()