Compare commits
No commits in common. "a36157b52fbe964f5a531f3a03c926f3e8125037" and "8979f48c2398ac520dd5e48afd365c3321b1c2b9" have entirely different histories.
a36157b52f
...
8979f48c23
|
Before Width: | Height: | Size: 105 KiB |
|
Before Width: | Height: | Size: 115 KiB |
|
Before Width: | Height: | Size: 98 KiB |
|
Before Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 90 KiB |
|
Before Width: | Height: | Size: 97 KiB |
|
Before Width: | Height: | Size: 59 KiB |
|
Before Width: | Height: | Size: 120 KiB |
@ -4,29 +4,27 @@ On peut désormais tracer nos premiers graphiques simples et bruts.
|
||||
S'ils ne sont pas très instructifs par rapport à ce que nous fournissent Home Assistant et InfluxDB, ils nous permettent au moins de nous assurer que tout fonctionne, et que les données semblent cohérentes.
|
||||
Les fichiers CSV correspondant à chaque figure sont conservés dans `data/` dans ce dossier.
|
||||
|
||||
Les graphiques couvrent maintenant toute la période disponible dans `data/weather_minutely.csv`.
|
||||
Une agrégation automatique réduit le nombre de points pour rester lisible (plus de courbes "peignes"), et l'axe des dates utilise un format compact qui évite tout chevauchement de labels.
|
||||
On peut au besoin restreindre la période avec `--days` ou imposer une fréquence d'agrégation avec `--resample`.
|
||||
On se limite dans un premier temps aux 7 derniers jours.
|
||||
|
||||
```shell
|
||||
python "docs/03 - Premiers graphiques/scripts/plot_basic_variables.py"
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
## Vues calendrier
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
# scripts/plot_basic_variables.py
|
||||
"""Génère des séries temporelles simples pour chaque variable météo."""
|
||||
"""Génère des séries temporelles simples (7 jours) pour chaque variable météo."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
@ -7,6 +7,7 @@ import argparse
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
|
||||
@ -15,7 +16,7 @@ if str(PROJECT_ROOT) not in sys.path:
|
||||
sys.path.insert(0, str(PROJECT_ROOT))
|
||||
|
||||
from meteo.dataset import load_raw_csv
|
||||
from meteo.plots import PlotChoice, PlotStyle, plot_basic_series, recommended_style, resample_series_for_plot
|
||||
from meteo.plots import export_plot_dataset
|
||||
from meteo.variables import Variable, VARIABLES
|
||||
|
||||
|
||||
@ -24,32 +25,47 @@ DOC_DIR = Path(__file__).resolve().parent.parent
|
||||
DEFAULT_OUTPUT_DIR = DOC_DIR / "figures"
|
||||
|
||||
|
||||
def _select_window(df: pd.DataFrame, *, last_days: int | None) -> pd.DataFrame:
|
||||
"""Extrait la fenêtre temporelle souhaitée (ou la totalité si None)."""
|
||||
def _prepare_slice(df: pd.DataFrame, *, last_days: int) -> pd.DataFrame:
|
||||
"""Extrait la fenêtre temporelle souhaitée et applique une moyenne horaire pour lisser la courbe."""
|
||||
|
||||
if last_days is None:
|
||||
return df
|
||||
end = df.index.max()
|
||||
start = end - pd.Timedelta(days=last_days)
|
||||
return df.loc[start:end]
|
||||
df_slice = df.loc[start:end]
|
||||
numeric_slice = df_slice.select_dtypes(include="number")
|
||||
if numeric_slice.empty:
|
||||
raise RuntimeError("Aucune colonne numérique disponible pour les moyennes horaires.")
|
||||
return numeric_slice.resample("1h").mean()
|
||||
|
||||
|
||||
def _format_ylabel(var: Variable) -> str:
|
||||
def _plot_variable(df_hourly: pd.DataFrame, var: Variable, output_dir: Path) -> Path | None:
|
||||
"""Trace la série pour une variable et retourne le chemin de l'image générée."""
|
||||
|
||||
if var.column not in df_hourly.columns:
|
||||
print(f"⚠ Colonne absente pour {var.key} ({var.column}).")
|
||||
return None
|
||||
|
||||
series = df_hourly[var.column].dropna()
|
||||
if series.empty:
|
||||
print(f"⚠ Aucun point valide pour {var.key} dans l'intervalle choisi.")
|
||||
return None
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
output_path = output_dir / f"{var.key}_last_7_days.png"
|
||||
|
||||
export_plot_dataset(series.to_frame(name=var.column), output_path)
|
||||
|
||||
plt.figure()
|
||||
plt.plot(series.index, series)
|
||||
plt.xlabel("Temps (UTC)")
|
||||
unit_text = f" ({var.unit})" if var.unit else ""
|
||||
return f"{var.label}{unit_text}"
|
||||
|
||||
|
||||
def _aggregation_label(choice: PlotChoice, freq: str) -> str:
|
||||
"""Texte court pour indiquer l'agrégation appliquée."""
|
||||
|
||||
base = "moyenne"
|
||||
if callable(choice.agg) and getattr(choice.agg, "__name__", "") == "_circular_mean_deg":
|
||||
base = "moyenne circulaire"
|
||||
elif choice.agg == "sum":
|
||||
base = "somme"
|
||||
elif choice.agg == "median":
|
||||
base = "médiane"
|
||||
return f"{base} {freq}"
|
||||
plt.ylabel(f"{var.label}{unit_text}")
|
||||
plt.title(f"{var.label} - Moyenne horaire sur les 7 derniers jours")
|
||||
plt.grid(True)
|
||||
plt.tight_layout()
|
||||
plt.savefig(output_path, dpi=150)
|
||||
plt.close()
|
||||
print(f"✔ Graphique généré : {output_path}")
|
||||
return output_path
|
||||
|
||||
|
||||
def main(argv: list[str] | None = None) -> None:
|
||||
@ -62,23 +78,8 @@ def main(argv: list[str] | None = None) -> None:
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Nombre de jours à afficher (par défaut : toute la période disponible).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--style",
|
||||
choices=[style.value for style in PlotStyle],
|
||||
help="Style de représentation à utiliser pour toutes les variables (par défaut : recommandations par variable).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resample",
|
||||
help="Fréquence pandas à utiliser pour l'agrégation temporelle (par défaut : calcul automatique).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-points",
|
||||
type=int,
|
||||
default=420,
|
||||
help="Nombre de points cible après agrégation automatique (par défaut : 420).",
|
||||
default=7,
|
||||
help="Nombre de jours à afficher (par défaut : 7).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
@ -92,7 +93,7 @@ def main(argv: list[str] | None = None) -> None:
|
||||
raise FileNotFoundError(f"Dataset introuvable : {CSV_PATH}")
|
||||
|
||||
df = load_raw_csv(CSV_PATH)
|
||||
df_window = _select_window(df, last_days=args.days)
|
||||
df_hourly = _prepare_slice(df, last_days=args.days)
|
||||
|
||||
selected: list[Variable]
|
||||
if args.only:
|
||||
@ -104,44 +105,8 @@ def main(argv: list[str] | None = None) -> None:
|
||||
else:
|
||||
selected = list(VARIABLES)
|
||||
|
||||
output_dir: Path = args.output_dir
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for variable in selected:
|
||||
if variable.column not in df_window.columns:
|
||||
print(f"⚠ Colonne absente pour {variable.key} ({variable.column}).")
|
||||
continue
|
||||
|
||||
series = df_window[variable.column].dropna()
|
||||
if series.empty:
|
||||
print(f"⚠ Aucun point valide pour {variable.key} sur la période choisie.")
|
||||
continue
|
||||
|
||||
style_choice = recommended_style(variable, args.style)
|
||||
|
||||
aggregated, freq_used = resample_series_for_plot(
|
||||
series,
|
||||
variable=variable,
|
||||
freq=args.resample,
|
||||
target_points=args.max_points,
|
||||
)
|
||||
if aggregated.empty:
|
||||
print(f"⚠ Pas de points après agrégation pour {variable.key}.")
|
||||
continue
|
||||
|
||||
output_path = output_dir / f"{variable.key}_overview.png"
|
||||
annotate_freq = _aggregation_label(style_choice, freq_used)
|
||||
|
||||
plot_basic_series(
|
||||
aggregated,
|
||||
variable=variable,
|
||||
output_path=output_path,
|
||||
style=style_choice.style,
|
||||
title=f"{variable.label} — évolution temporelle",
|
||||
ylabel=_format_ylabel(variable),
|
||||
annotate_freq=annotate_freq,
|
||||
)
|
||||
print(f"✔ Graphique généré : {output_path}")
|
||||
_plot_variable(df_hourly, variable, args.output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
Before Width: | Height: | Size: 206 KiB |
|
Before Width: | Height: | Size: 192 KiB |
|
Before Width: | Height: | Size: 135 KiB |
|
Before Width: | Height: | Size: 184 KiB |
|
Before Width: | Height: | Size: 164 KiB |
|
Before Width: | Height: | Size: 216 KiB |
|
Before Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 176 KiB |
|
Before Width: | Height: | Size: 219 KiB |
|
Before Width: | Height: | Size: 199 KiB |
|
Before Width: | Height: | Size: 129 KiB |
|
Before Width: | Height: | Size: 180 KiB |
|
Before Width: | Height: | Size: 153 KiB |
|
Before Width: | Height: | Size: 209 KiB |
|
Before Width: | Height: | Size: 150 KiB |
|
Before Width: | Height: | Size: 120 KiB |
|
Before Width: | Height: | Size: 90 KiB |
|
Before Width: | Height: | Size: 154 KiB |
|
Before Width: | Height: | Size: 192 KiB |
|
Before Width: | Height: | Size: 194 KiB |
|
Before Width: | Height: | Size: 182 KiB |
|
Before Width: | Height: | Size: 127 KiB |
|
Before Width: | Height: | Size: 174 KiB |
|
Before Width: | Height: | Size: 153 KiB |
|
Before Width: | Height: | Size: 206 KiB |
|
Before Width: | Height: | Size: 146 KiB |
|
Before Width: | Height: | Size: 205 KiB |
|
Before Width: | Height: | Size: 179 KiB |
@ -1,66 +1,7 @@
|
||||
# Corrélations binaires
|
||||
|
||||
## Superpositions simples
|
||||
|
||||
```shell
|
||||
python "docs/04 - Corrélations binaires/scripts/plot_pairwise_time_series.py"
|
||||
```
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
## Nuages de points
|
||||
Cette étape regroupe l'ensemble des scripts dédiés aux corrélations et comparaisons directes entre variables.
|
||||
Chaque figure déposée dans `figures/` possède son CSV compagnon exporté dans le dossier `data/` au même emplacement.
|
||||
|
||||
```shell
|
||||
python "docs/04 - Corrélations binaires/scripts/plot_all_pairwise_scatter.py"
|
||||
|
||||
@ -1,169 +0,0 @@
|
||||
# scripts/plot_pairwise_time_series.py
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
|
||||
PROJECT_ROOT = Path(__file__).resolve().parents[3]
|
||||
if str(PROJECT_ROOT) not in sys.path:
|
||||
sys.path.insert(0, str(PROJECT_ROOT))
|
||||
|
||||
from meteo.dataset import load_raw_csv
|
||||
from meteo.plots import (
|
||||
PlotChoice,
|
||||
PlotStyle,
|
||||
plot_dual_time_series,
|
||||
recommended_style,
|
||||
resample_series_for_plot,
|
||||
)
|
||||
from meteo.variables import Variable, VARIABLES, VARIABLES_BY_KEY, iter_variable_pairs
|
||||
|
||||
|
||||
CSV_PATH = Path("data/weather_minutely.csv")
|
||||
DOC_DIR = Path(__file__).resolve().parent.parent
|
||||
OUTPUT_DIR = DOC_DIR / "figures" / "pairwise_timeseries"
|
||||
|
||||
|
||||
def _select_variables(keys: list[str] | None) -> list[Variable]:
|
||||
if not keys:
|
||||
return list(VARIABLES)
|
||||
missing = [key for key in keys if key not in VARIABLES_BY_KEY]
|
||||
if missing:
|
||||
raise KeyError(f"Variables inconnues : {', '.join(missing)}")
|
||||
return [VARIABLES_BY_KEY[key] for key in keys]
|
||||
|
||||
|
||||
def _aggregation_label(choice_a: PlotChoice, choice_b: PlotChoice, freq: str) -> str:
|
||||
agg_labels = set()
|
||||
for choice in (choice_a, choice_b):
|
||||
base = "moyenne"
|
||||
if isinstance(choice.agg, str):
|
||||
if choice.agg == "sum":
|
||||
base = "somme"
|
||||
elif choice.agg == "median":
|
||||
base = "médiane"
|
||||
elif getattr(choice.agg, "__name__", "") == "_circular_mean_deg":
|
||||
base = "moyenne circulaire"
|
||||
agg_labels.add(base)
|
||||
if len(agg_labels) == 1:
|
||||
label = agg_labels.pop()
|
||||
else:
|
||||
label = "agrégations mixtes"
|
||||
return f"{label} {freq}"
|
||||
|
||||
|
||||
def main(argv: list[str] | None = None) -> None:
|
||||
parser = argparse.ArgumentParser(description="Superpose les séries temporelles de toutes les paires de variables.")
|
||||
parser.add_argument(
|
||||
"--only",
|
||||
nargs="*",
|
||||
help="Clés de variables à inclure (par défaut : toutes).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Limiter aux N derniers jours (par défaut : période complète).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--style",
|
||||
choices=[style.value for style in PlotStyle],
|
||||
help="Style à imposer à toutes les variables (par défaut : style recommandé par variable).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resample",
|
||||
help="Fréquence pandas pour l'agrégation temporelle (par défaut : calcul automatique).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-points",
|
||||
type=int,
|
||||
default=420,
|
||||
help="Nombre de points cible après agrégation automatique (par défaut : 420).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default=OUTPUT_DIR,
|
||||
help="Dossier où stocker les figures.",
|
||||
)
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
if not CSV_PATH.exists():
|
||||
print(f"⚠ Fichier introuvable : {CSV_PATH}")
|
||||
return
|
||||
|
||||
df = load_raw_csv(CSV_PATH)
|
||||
if args.days is not None:
|
||||
end = df.index.max()
|
||||
start = end - pd.Timedelta(days=args.days)
|
||||
df = df.loc[start:end]
|
||||
|
||||
variables = _select_variables(args.only)
|
||||
pairs = [(vx, vy) for (vx, vy) in iter_variable_pairs() if vx in variables and vy in variables]
|
||||
if not pairs:
|
||||
print("⚠ Aucune paire à tracer.")
|
||||
return
|
||||
|
||||
output_dir: Path = args.output_dir
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Dataset chargé ({len(df)} lignes) → génération de {len(pairs)} paires.")
|
||||
|
||||
for var_a, var_b in pairs:
|
||||
missing: list[str] = []
|
||||
for col in (var_a.column, var_b.column):
|
||||
if col not in df.columns:
|
||||
missing.append(col)
|
||||
if missing:
|
||||
print(f"⚠ Colonnes absentes, on passe : {', '.join(missing)}")
|
||||
continue
|
||||
|
||||
series_a = df[var_a.column].dropna()
|
||||
series_b = df[var_b.column].dropna()
|
||||
if series_a.empty or series_b.empty:
|
||||
print(f"⚠ Données insuffisantes pour {var_a.key} / {var_b.key}, on passe.")
|
||||
continue
|
||||
|
||||
choice_a = recommended_style(var_a, args.style)
|
||||
choice_b = recommended_style(var_b, args.style)
|
||||
|
||||
aggregated_a, freq_used = resample_series_for_plot(
|
||||
series_a,
|
||||
variable=var_a,
|
||||
freq=args.resample,
|
||||
target_points=args.max_points,
|
||||
)
|
||||
aggregated_b, _ = resample_series_for_plot(
|
||||
series_b,
|
||||
variable=var_b,
|
||||
freq=freq_used,
|
||||
target_points=args.max_points,
|
||||
)
|
||||
if aggregated_a.empty or aggregated_b.empty:
|
||||
print(f"⚠ Pas de points après agrégation pour {var_a.key} / {var_b.key}.")
|
||||
continue
|
||||
|
||||
output_path = output_dir / f"timeseries_{var_a.key}_vs_{var_b.key}.png"
|
||||
label_freq = _aggregation_label(choice_a, choice_b, freq_used)
|
||||
|
||||
print(f"→ {var_a.key} vs {var_b.key} ({freq_used}) → {output_path}")
|
||||
plot_dual_time_series(
|
||||
aggregated_a,
|
||||
var_a,
|
||||
choice_a,
|
||||
aggregated_b,
|
||||
var_b,
|
||||
choice_b,
|
||||
output_path=output_path,
|
||||
title=f"{var_a.label} et {var_b.label} — évolution temporelle",
|
||||
annotate_freq=label_freq,
|
||||
)
|
||||
|
||||
print("✔ Superpositions temporelles générées.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -22,14 +22,6 @@ from .relationships import (
|
||||
plot_pairwise_relationship_grid,
|
||||
plot_scatter_pair,
|
||||
)
|
||||
from .basic_series import (
|
||||
PlotChoice,
|
||||
PlotStyle,
|
||||
plot_basic_series,
|
||||
plot_dual_time_series,
|
||||
recommended_style,
|
||||
resample_series_for_plot,
|
||||
)
|
||||
from .seasonal_profiles import (
|
||||
plot_daylight_hours,
|
||||
plot_diurnal_cycle,
|
||||
@ -62,12 +54,6 @@ __all__ = [
|
||||
"plot_hexbin_with_third_variable",
|
||||
"plot_pairwise_relationship_grid",
|
||||
"plot_scatter_pair",
|
||||
"PlotChoice",
|
||||
"PlotStyle",
|
||||
"plot_basic_series",
|
||||
"plot_dual_time_series",
|
||||
"recommended_style",
|
||||
"resample_series_for_plot",
|
||||
"plot_daylight_hours",
|
||||
"plot_diurnal_cycle",
|
||||
"plot_seasonal_hourly_profiles",
|
||||
|
||||
@ -1,350 +0,0 @@
|
||||
"""Tracés simples et réutilisables pour les séries temporelles de base."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from meteo.dataset import _circular_mean_deg
|
||||
from meteo.variables import Variable
|
||||
|
||||
from .base import export_plot_dataset
|
||||
|
||||
__all__ = [
|
||||
"PlotStyle",
|
||||
"PlotChoice",
|
||||
"recommended_style",
|
||||
"resample_series_for_plot",
|
||||
"plot_basic_series",
|
||||
"plot_dual_time_series",
|
||||
]
|
||||
|
||||
|
||||
class PlotStyle(str, Enum):
|
||||
LINE = "line"
|
||||
AREA = "area"
|
||||
BAR = "bar"
|
||||
SCATTER = "scatter"
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PlotChoice:
|
||||
"""Configuration par variable : style et fonction d'agrégation."""
|
||||
|
||||
style: PlotStyle
|
||||
agg: Callable[[pd.Series], float] | str = "mean"
|
||||
|
||||
|
||||
DEFAULT_CHOICES: dict[str, PlotChoice] = {
|
||||
# Variations continues : lignes ou aires.
|
||||
"temperature": PlotChoice(PlotStyle.LINE, "mean"),
|
||||
"pressure": PlotChoice(PlotStyle.LINE, "mean"),
|
||||
"humidity": PlotChoice(PlotStyle.AREA, "mean"),
|
||||
"illuminance": PlotChoice(PlotStyle.AREA, "mean"),
|
||||
"sun_elevation": PlotChoice(PlotStyle.AREA, "mean"),
|
||||
# Variables dont la perception bénéficie d'autres représentations.
|
||||
"rain_rate": PlotChoice(PlotStyle.BAR, "mean"),
|
||||
"wind_speed": PlotChoice(PlotStyle.LINE, "mean"),
|
||||
"wind_direction": PlotChoice(PlotStyle.SCATTER, _circular_mean_deg),
|
||||
}
|
||||
|
||||
# Palette douce mais contrastée, associée aux variables.
|
||||
PALETTE = {
|
||||
"temperature": "#d1495b",
|
||||
"pressure": "#5c677d",
|
||||
"humidity": "#2c7bb6",
|
||||
"rain_rate": "#1b9e77",
|
||||
"illuminance": "#f4a259",
|
||||
"wind_speed": "#118ab2",
|
||||
"wind_direction": "#8e6c8a",
|
||||
"sun_elevation": "#f08c42",
|
||||
}
|
||||
DEFAULT_COLOR = "#386cb0"
|
||||
|
||||
|
||||
def recommended_style(variable: Variable, override: str | None = None) -> PlotChoice:
|
||||
"""Retourne le style/agrégation par défaut, ou une surcharge utilisateur."""
|
||||
|
||||
if override:
|
||||
style = PlotStyle(override)
|
||||
agg = DEFAULT_CHOICES.get(variable.key, PlotChoice(style)).agg
|
||||
return PlotChoice(style, agg)
|
||||
return DEFAULT_CHOICES.get(variable.key, PlotChoice(PlotStyle.LINE))
|
||||
|
||||
|
||||
def _nice_frequencies() -> list[tuple[str, pd.Timedelta]]:
|
||||
return [
|
||||
("5min", pd.Timedelta(minutes=5)),
|
||||
("10min", pd.Timedelta(minutes=10)),
|
||||
("15min", pd.Timedelta(minutes=15)),
|
||||
("30min", pd.Timedelta(minutes=30)),
|
||||
("1h", pd.Timedelta(hours=1)),
|
||||
("3h", pd.Timedelta(hours=3)),
|
||||
("6h", pd.Timedelta(hours=6)),
|
||||
("12h", pd.Timedelta(hours=12)),
|
||||
("1d", pd.Timedelta(days=1)),
|
||||
("3d", pd.Timedelta(days=3)),
|
||||
("7d", pd.Timedelta(days=7)),
|
||||
]
|
||||
|
||||
|
||||
def _auto_resample_frequency(index: pd.DatetimeIndex, *, target_points: int = 420) -> str:
|
||||
"""Choisit une fréquence qui limite le nombre de points tout en conservant la forme générale."""
|
||||
|
||||
if index.empty or len(index) < 2:
|
||||
return "1h"
|
||||
|
||||
span = index.max() - index.min()
|
||||
if span <= pd.Timedelta(0):
|
||||
return "1h"
|
||||
|
||||
for label, delta in _nice_frequencies():
|
||||
if span / delta <= target_points:
|
||||
return label
|
||||
|
||||
return _nice_frequencies()[-1][0]
|
||||
|
||||
|
||||
def _format_time_axis(ax: plt.Axes) -> None:
|
||||
locator = mdates.AutoDateLocator(minticks=4, maxticks=8)
|
||||
formatter = mdates.ConciseDateFormatter(locator, formats=["%Y", "%b", "%d", "%d %H:%M", "%H:%M", "%S"])
|
||||
ax.xaxis.set_major_locator(locator)
|
||||
ax.xaxis.set_major_formatter(formatter)
|
||||
|
||||
|
||||
def _infer_bar_width(index: pd.DatetimeIndex) -> float:
|
||||
"""
|
||||
Calcule une largeur de barre raisonnable (en jours) pour les histogrammes temporels.
|
||||
"""
|
||||
|
||||
if len(index) < 2:
|
||||
return 0.3 # ~7 heures, pour rendre le point visible même isolé
|
||||
|
||||
diffs = np.diff(index.asi8) # nanosecondes
|
||||
median_ns = float(np.median(diffs))
|
||||
if not np.isfinite(median_ns) or median_ns <= 0:
|
||||
return 0.1
|
||||
return pd.to_timedelta(median_ns, unit="ns") / pd.Timedelta(days=1) * 0.8
|
||||
|
||||
|
||||
def _ensure_datetime_index(series: pd.Series) -> pd.Series:
|
||||
if not isinstance(series.index, pd.DatetimeIndex):
|
||||
raise TypeError("Une série temporelle (DatetimeIndex) est attendue pour le tracé.")
|
||||
return series
|
||||
|
||||
|
||||
def _series_color(variable: Variable) -> str:
|
||||
if variable.key in PALETTE:
|
||||
return PALETTE[variable.key]
|
||||
return PALETTE.get(variable.column, DEFAULT_COLOR)
|
||||
|
||||
|
||||
def _format_label(var: Variable) -> str:
|
||||
unit_text = f" ({var.unit})" if var.unit else ""
|
||||
return f"{var.label}{unit_text}"
|
||||
|
||||
|
||||
def resample_series_for_plot(
|
||||
series: pd.Series,
|
||||
*,
|
||||
variable: Variable,
|
||||
freq: str | None = None,
|
||||
target_points: int = 420,
|
||||
) -> tuple[pd.Series, str]:
|
||||
"""
|
||||
Prépare une série pour l'affichage : resample et agrégation adaptés à la variable.
|
||||
"""
|
||||
|
||||
_ensure_datetime_index(series)
|
||||
|
||||
if freq is None:
|
||||
freq = _auto_resample_frequency(series.index, target_points=target_points)
|
||||
|
||||
agg_func = DEFAULT_CHOICES.get(variable.key, PlotChoice(PlotStyle.LINE)).agg
|
||||
resampled = series.resample(freq).agg(agg_func).dropna()
|
||||
return resampled, freq
|
||||
|
||||
|
||||
def plot_basic_series(
|
||||
series: pd.Series,
|
||||
*,
|
||||
variable: Variable,
|
||||
output_path: str | Path,
|
||||
style: PlotStyle,
|
||||
title: str,
|
||||
ylabel: str,
|
||||
annotate_freq: str | None = None,
|
||||
) -> Path:
|
||||
"""
|
||||
Trace une série temporelle avec un style simple (ligne, aire, barres, nuage de points).
|
||||
"""
|
||||
|
||||
_ensure_datetime_index(series)
|
||||
|
||||
if series.empty:
|
||||
raise ValueError(f"Aucune donnée disponible pour {variable.key} après filtrage.")
|
||||
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
color = _series_color(variable)
|
||||
x = mdates.date2num(series.index)
|
||||
values = series.to_numpy(dtype=float)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(11, 4.2))
|
||||
if style is PlotStyle.LINE:
|
||||
ax.plot_date(x, values, "-", linewidth=1.8, color=color, label=variable.label)
|
||||
elif style is PlotStyle.AREA:
|
||||
ax.fill_between(x, values, step="mid", color=color, alpha=0.2)
|
||||
ax.plot_date(x, values, "-", linewidth=1.6, color=color)
|
||||
elif style is PlotStyle.BAR:
|
||||
width = _infer_bar_width(series.index)
|
||||
ax.bar(x, values, width=width, color=color, edgecolor=color, linewidth=0.5, alpha=0.85)
|
||||
elif style is PlotStyle.SCATTER:
|
||||
ax.scatter(x, values, s=16, color=color, alpha=0.9)
|
||||
else:
|
||||
raise ValueError(f"Style inconnu : {style}")
|
||||
|
||||
ax.set_title(title)
|
||||
ax.set_ylabel(ylabel)
|
||||
_format_time_axis(ax)
|
||||
ax.grid(True, color="#e0e0e0", linewidth=0.8, alpha=0.7)
|
||||
ax.margins(x=0.02, y=0.05)
|
||||
|
||||
if annotate_freq:
|
||||
ax.text(
|
||||
0.99,
|
||||
0.02,
|
||||
f"Agrégation : {annotate_freq}",
|
||||
transform=ax.transAxes,
|
||||
ha="right",
|
||||
va="bottom",
|
||||
fontsize=9,
|
||||
color="#555555",
|
||||
)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
export_plot_dataset(series.to_frame(name=variable.column), output_path)
|
||||
return output_path.resolve()
|
||||
|
||||
|
||||
def _draw_series(ax: plt.Axes, series: pd.Series, *, choice: PlotChoice, color: str, label: str):
|
||||
x = mdates.date2num(series.index)
|
||||
values = series.to_numpy(dtype=float)
|
||||
|
||||
if choice.style is PlotStyle.LINE:
|
||||
return ax.plot_date(x, values, "-", linewidth=1.8, color=color, label=label)
|
||||
if choice.style is PlotStyle.AREA:
|
||||
ax.fill_between(x, values, step="mid", color=color, alpha=0.15)
|
||||
return ax.plot_date(x, values, "-", linewidth=1.6, color=color, label=label)
|
||||
if choice.style is PlotStyle.BAR:
|
||||
width = _infer_bar_width(series.index) * 0.9
|
||||
return ax.bar(x, values, width=width, color=color, edgecolor=color, linewidth=0.5, alpha=0.75, label=label)
|
||||
if choice.style is PlotStyle.SCATTER:
|
||||
return ax.scatter(x, values, s=16, color=color, alpha=0.9, label=label)
|
||||
raise ValueError(f"Style inconnu : {choice.style}")
|
||||
|
||||
|
||||
def plot_dual_time_series(
|
||||
series_left: pd.Series,
|
||||
variable_left: Variable,
|
||||
choice_left: PlotChoice,
|
||||
series_right: pd.Series,
|
||||
variable_right: Variable,
|
||||
choice_right: PlotChoice,
|
||||
*,
|
||||
output_path: str | Path,
|
||||
title: str,
|
||||
annotate_freq: str | None = None,
|
||||
) -> Path:
|
||||
"""Superpose deux séries temporelles (axes Y séparés) avec styles adaptés."""
|
||||
|
||||
_ensure_datetime_index(series_left)
|
||||
_ensure_datetime_index(series_right)
|
||||
|
||||
if series_left.empty or series_right.empty:
|
||||
raise ValueError("Les séries à tracer ne peuvent pas être vides.")
|
||||
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
color_left = _series_color(variable_left)
|
||||
color_right = _series_color(variable_right)
|
||||
|
||||
fig, ax_left = plt.subplots(figsize=(11, 4.6))
|
||||
ax_right = ax_left.twinx()
|
||||
|
||||
artists_left = _draw_series(
|
||||
ax_left,
|
||||
series_left,
|
||||
choice=choice_left,
|
||||
color=color_left,
|
||||
label=_format_label(variable_left),
|
||||
)
|
||||
artists_right = _draw_series(
|
||||
ax_right,
|
||||
series_right,
|
||||
choice=choice_right,
|
||||
color=color_right,
|
||||
label=_format_label(variable_right),
|
||||
)
|
||||
|
||||
ax_left.set_ylabel(_format_label(variable_left), color=color_left)
|
||||
ax_right.set_ylabel(_format_label(variable_right), color=color_right)
|
||||
ax_left.tick_params(axis="y", labelcolor=color_left)
|
||||
ax_right.tick_params(axis="y", labelcolor=color_right)
|
||||
|
||||
_format_time_axis(ax_left)
|
||||
ax_left.grid(True, color="#e0e0e0", linewidth=0.8, alpha=0.7)
|
||||
ax_left.margins(x=0.02, y=0.05)
|
||||
ax_right.margins(x=0.02, y=0.05)
|
||||
ax_left.set_title(title)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
for artist in artists_left if isinstance(artists_left, list) else [artists_left]:
|
||||
handles.append(artist)
|
||||
labels.append(artist.get_label())
|
||||
if isinstance(artists_right, list):
|
||||
handles.extend(artists_right)
|
||||
labels.extend([a.get_label() for a in artists_right])
|
||||
else:
|
||||
handles.append(artists_right)
|
||||
labels.append(artists_right.get_label())
|
||||
|
||||
ax_left.legend(handles, labels, loc="upper left")
|
||||
|
||||
if annotate_freq:
|
||||
ax_left.text(
|
||||
0.99,
|
||||
0.02,
|
||||
f"Agrégation : {annotate_freq}",
|
||||
transform=ax_left.transAxes,
|
||||
ha="right",
|
||||
va="bottom",
|
||||
fontsize=9,
|
||||
color="#555555",
|
||||
)
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(output_path, dpi=150)
|
||||
plt.close(fig)
|
||||
|
||||
export_plot_dataset(
|
||||
pd.concat(
|
||||
{variable_left.column: series_left, variable_right.column: series_right},
|
||||
axis=1,
|
||||
),
|
||||
output_path,
|
||||
)
|
||||
return output_path.resolve()
|
||||