Ajoute le genre des personnages et colore les graphiques
This commit is contained in:
parent
230b9db239
commit
f5c1fa6333
@ -222,7 +222,7 @@ Cette étape se lance après le téléchargement des données d'inventaire (éta
|
||||
1. `source .venv/bin/activate`
|
||||
2. `python -m scripts.compute_minifigs_by_set`
|
||||
|
||||
Le script lit l'inventaire agrégé `data/intermediate/parts_filtered.csv`, les inventaires `data/raw/inventories.csv`, `data/raw/inventory_parts.csv`, `data/raw/inventory_minifigs.csv`, le catalogue des pièces (`data/raw/parts.csv`) et celui des minifigs (`data/raw/minifigs.csv`). Il sélectionne les têtes de minifigs (catégorie 59), ignore les rechanges et dédoublonne par set et référence. Si une tête est associée à une minifig précise dans l'inventaire du set, `known_character` est renseigné avec le nom de la minifig et `fig_num` est indiqué ; sinon, `known_character` reste vide après tentative de correspondance automatique. Le CSV `data/intermediate/minifigs_by_set.csv` contient : `set_num`, `part_num`, `known_character`, `fig_num`.
|
||||
Le script lit l'inventaire agrégé `data/intermediate/parts_filtered.csv`, les inventaires `data/raw/inventories.csv`, `data/raw/inventory_parts.csv`, `data/raw/inventory_minifigs.csv`, le catalogue des pièces (`data/raw/parts.csv`) et celui des minifigs (`data/raw/minifigs.csv`). Il sélectionne les têtes de minifigs (catégorie 59), ignore les rechanges et dédoublonne par set et référence. Si une tête est associée à une minifig précise dans l'inventaire du set, `known_character` est renseigné avec le nom de la minifig et `fig_num` est indiqué ; sinon, `known_character` reste vide après tentative de correspondance automatique. Les correspondances d'alias sont décrites dans `config/known_character_aliases.csv` et les genres des personnages nommés dans `config/known_character_genders.csv`. Le CSV `data/intermediate/minifigs_by_set.csv` contient : `set_num`, `part_num`, `known_character`, `fig_num`, `gender`.
|
||||
|
||||
### Étape 21 : visualiser le nombre de minifigs par set
|
||||
|
||||
@ -239,7 +239,7 @@ Le script relit `data/intermediate/sets_enriched.csv`, `data/intermediate/parts_
|
||||
1. `source .venv/bin/activate`
|
||||
2. `python -m scripts.plot_minifig_characters`
|
||||
|
||||
Le script lit `data/intermediate/minifigs_by_set.csv`, compte le nombre de minifigs distinctes par personnage (`known_character` + `fig_num`), écrit `data/intermediate/minifig_characters_counts.csv`, puis trace `figures/step22/minifig_characters.png` (barres horizontales triées).
|
||||
Le script lit `data/intermediate/minifigs_by_set.csv`, compte le nombre de minifigs distinctes par personnage (`known_character` + `fig_num`), écrit `data/intermediate/minifig_characters_counts.csv`, puis trace `figures/step22/minifig_characters.png` (barres horizontales triées). Les barres sont colorées en fonction du genre renseigné dans `config/known_character_genders.csv`.
|
||||
|
||||
### Étape 23 : présence annuelle des personnages
|
||||
|
||||
@ -253,4 +253,4 @@ Le script lit `data/intermediate/minifigs_by_set.csv` et `data/intermediate/sets
|
||||
1. `source .venv/bin/activate`
|
||||
2. `python -m scripts.plot_minifig_character_spans`
|
||||
|
||||
Le script lit `data/intermediate/minifigs_by_set.csv` et `data/intermediate/sets_enriched.csv`, calcule la première et la dernière année d'apparition pour chaque personnage (hors figurants), sérialise `data/intermediate/minifig_character_spans.csv`, puis trace `figures/step24/minifig_character_spans.png` (barres horizontales des spans).
|
||||
Le script lit `data/intermediate/minifigs_by_set.csv` et `data/intermediate/sets_enriched.csv`, calcule la première et la dernière année d'apparition pour chaque personnage (hors figurants), sérialise `data/intermediate/minifig_character_spans.csv`, puis trace `figures/step24/minifig_character_spans.png` (barres horizontales des spans). Les barres sont colorées selon le genre issu de `config/known_character_genders.csv`.
|
||||
|
||||
54
config/known_character_genders.csv
Normal file
54
config/known_character_genders.csv
Normal file
@ -0,0 +1,54 @@
|
||||
known_character,gender
|
||||
ACU Trooper,unknown
|
||||
Allison Miles,female
|
||||
Alan Grant,male
|
||||
Atwater,male
|
||||
Barry,male
|
||||
Ben,male
|
||||
Brooklynn,female
|
||||
Claire Dearing,female
|
||||
Danny Nedermeyer,male
|
||||
Darius,male
|
||||
Dennis Nedry,male
|
||||
Donald Gennaro,male
|
||||
Dr Wu,male
|
||||
Duncan Kincaid,male
|
||||
Eli Mills,male
|
||||
Ellie Sattler,female
|
||||
Figurant,unknown
|
||||
Franklin Web,male
|
||||
Franklin Webb,male
|
||||
Gray,male
|
||||
Gray Mitchell,male
|
||||
Gunnar Eversol,male
|
||||
Henry Loomis,male
|
||||
Henry Wu,male
|
||||
Hudson Harper,male
|
||||
Ian Malcolm,male
|
||||
Isabella Delgado,female
|
||||
John Hammond,male
|
||||
Kayla Watts,female
|
||||
Ken Wheatley,male
|
||||
Kenji,male
|
||||
Lex Murphy,female
|
||||
LeClerc,male
|
||||
Maisie Lockwood,female
|
||||
Martin Krebs,male
|
||||
Owen Grady,male
|
||||
Rainn DeLaCourt,male
|
||||
Ray Arnold,male
|
||||
Reuben Delgado,male
|
||||
Robert Muldoon,male
|
||||
Sammy,female
|
||||
Simon Masrani,male
|
||||
Sinjin Prescott,male
|
||||
Soyona Santos,female
|
||||
Teresa Delgado,female
|
||||
Tim Murphy,male
|
||||
Vic Hoskins,male
|
||||
Xavier Dobbs,male
|
||||
Yaz,female
|
||||
Zach,male
|
||||
Zach Mitchell,male
|
||||
Zia Rodriguez,female
|
||||
Zora Bennett,female
|
||||
|
@ -1,20 +1,35 @@
|
||||
"""Diagramme de longévité des personnages (bornes d'apparition)."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import Dict, List
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Patch
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.milestones import load_milestones
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
GENDER_COLORS = {
|
||||
"male": "#4c72b0",
|
||||
"female": "#c44e52",
|
||||
"unknown": "#7f7f7f",
|
||||
}
|
||||
GENDER_LABELS = {
|
||||
"male": "Homme",
|
||||
"female": "Femme",
|
||||
"unknown": "Inconnu",
|
||||
"": "Inconnu",
|
||||
}
|
||||
|
||||
|
||||
def load_spans(path: Path) -> List[dict]:
|
||||
"""Charge le CSV des bornes min/max par personnage."""
|
||||
return read_rows(path)
|
||||
|
||||
|
||||
def plot_character_spans(spans_path: Path, destination_path: Path) -> None:
|
||||
def plot_character_spans(spans_path: Path, destination_path: Path, milestones_path: Path | None = None) -> None:
|
||||
"""Trace un diagramme en barres représentant la longévité des personnages."""
|
||||
rows = load_spans(spans_path)
|
||||
if not rows:
|
||||
@ -23,18 +38,22 @@ def plot_character_spans(spans_path: Path, destination_path: Path) -> None:
|
||||
starts = [int(row["start_year"]) for row in rows]
|
||||
ends = [int(row["end_year"]) for row in rows]
|
||||
counts = [int(row["total_minifigs"]) for row in rows]
|
||||
genders = [row.get("gender", "") for row in rows]
|
||||
colors = [GENDER_COLORS.get(gender.strip().lower(), GENDER_COLORS["unknown"]) for gender in genders]
|
||||
positions = list(range(len(rows)))
|
||||
widths = [end - start + 1 for start, end in zip(starts, ends)]
|
||||
min_year = min(starts)
|
||||
max_year = max(ends)
|
||||
height = max(5, len(rows) * 0.3)
|
||||
|
||||
milestones = load_milestones(milestones_path) if milestones_path else []
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, height))
|
||||
bars = ax.barh(
|
||||
positions,
|
||||
widths,
|
||||
left=starts,
|
||||
color="#1f77b4",
|
||||
color=colors,
|
||||
edgecolor="#0d0d0d",
|
||||
linewidth=0.6,
|
||||
)
|
||||
@ -57,6 +76,55 @@ def plot_character_spans(spans_path: Path, destination_path: Path) -> None:
|
||||
color="#0d0d0d",
|
||||
)
|
||||
|
||||
legend_entries = []
|
||||
seen = set()
|
||||
for gender in genders:
|
||||
normalized = gender.strip().lower()
|
||||
if normalized in seen:
|
||||
continue
|
||||
seen.add(normalized)
|
||||
legend_entries.append(
|
||||
Patch(
|
||||
facecolor=GENDER_COLORS.get(normalized, GENDER_COLORS["unknown"]),
|
||||
edgecolor="#0d0d0d",
|
||||
linewidth=0.6,
|
||||
label=GENDER_LABELS.get(normalized, "Inconnu"),
|
||||
)
|
||||
)
|
||||
if legend_entries:
|
||||
ax.legend(handles=legend_entries, title="Genre", loc="lower right")
|
||||
|
||||
if milestones:
|
||||
milestones_in_range = sorted(
|
||||
[m for m in milestones if min_year <= m["year"] <= max_year],
|
||||
key=lambda m: (m["year"], m["description"]),
|
||||
)
|
||||
milestone_offsets: Dict[int, int] = {}
|
||||
offset_step = 0.2
|
||||
max_offset = 0
|
||||
y_bottom, y_top = ax.get_ylim()
|
||||
text_y = y_top - (y_top - y_bottom) * 0.01
|
||||
for milestone in milestones_in_range:
|
||||
year = milestone["year"]
|
||||
count_for_year = milestone_offsets.get(year, 0)
|
||||
milestone_offsets[year] = count_for_year + 1
|
||||
horizontal_offset = offset_step * (count_for_year // 2 + 1)
|
||||
max_offset = max(max_offset, count_for_year)
|
||||
if count_for_year % 2 == 1:
|
||||
horizontal_offset *= -1
|
||||
text_x = year + horizontal_offset
|
||||
ax.axvline(year, color="#d62728", linestyle="--", linewidth=1, alpha=0.65)
|
||||
ax.text(
|
||||
text_x,
|
||||
text_y,
|
||||
milestone["description"],
|
||||
rotation=90,
|
||||
verticalalignment="top",
|
||||
horizontalalignment="center",
|
||||
fontsize=8,
|
||||
color="#d62728",
|
||||
)
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
fig.savefig(destination_path, dpi=160)
|
||||
|
||||
@ -4,11 +4,25 @@ from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Patch
|
||||
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
GENDER_COLORS = {
|
||||
"male": "#4c72b0",
|
||||
"female": "#c44e52",
|
||||
"unknown": "#7f7f7f",
|
||||
}
|
||||
GENDER_LABELS = {
|
||||
"male": "Homme",
|
||||
"female": "Femme",
|
||||
"unknown": "Inconnu",
|
||||
"": "Inconnu",
|
||||
}
|
||||
|
||||
|
||||
def load_counts(path: Path) -> List[dict]:
|
||||
"""Charge le CSV des comptes par personnage."""
|
||||
return read_rows(path)
|
||||
@ -24,11 +38,13 @@ def plot_minifigs_per_character(counts_path: Path, destination_path: Path) -> No
|
||||
rows = load_counts(counts_path)
|
||||
characters = [row["known_character"] for row in rows]
|
||||
counts = [int(row["minifig_count"]) for row in rows]
|
||||
genders = [row.get("gender", "") for row in rows]
|
||||
colors = [GENDER_COLORS.get(gender.strip().lower(), GENDER_COLORS["unknown"]) for gender in genders]
|
||||
positions = list(range(len(rows)))
|
||||
height = max(6, len(rows) * 0.22)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, height))
|
||||
bars = ax.barh(positions, counts, color="#1f77b4", edgecolor="#0d0d0d", linewidth=0.6)
|
||||
bars = ax.barh(positions, counts, color=colors, edgecolor="#0d0d0d", linewidth=0.6)
|
||||
ax.set_yticks(positions)
|
||||
ax.set_yticklabels(characters)
|
||||
ax.invert_yaxis()
|
||||
@ -40,6 +56,23 @@ def plot_minifigs_per_character(counts_path: Path, destination_path: Path) -> No
|
||||
for index, bar in enumerate(bars):
|
||||
value = counts[index]
|
||||
ax.text(value + 0.1, bar.get_y() + bar.get_height() / 2, str(value), va="center", fontsize=8)
|
||||
legend_entries = []
|
||||
seen = set()
|
||||
for gender in genders:
|
||||
normalized = gender.strip().lower()
|
||||
if normalized in seen:
|
||||
continue
|
||||
seen.add(normalized)
|
||||
legend_entries.append(
|
||||
Patch(
|
||||
facecolor=GENDER_COLORS.get(normalized, GENDER_COLORS["unknown"]),
|
||||
edgecolor="#0d0d0d",
|
||||
linewidth=0.6,
|
||||
label=GENDER_LABELS.get(normalized, "Inconnu"),
|
||||
)
|
||||
)
|
||||
if legend_entries:
|
||||
ax.legend(handles=legend_entries, title="Genre", loc="lower right")
|
||||
|
||||
ensure_parent_dir(destination_path)
|
||||
fig.tight_layout()
|
||||
|
||||
@ -1,12 +1,12 @@
|
||||
"""Agrégation des minifigs par personnage représenté."""
|
||||
|
||||
import csv
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Sequence, Set
|
||||
|
||||
from lib.rebrickable.stats import read_rows
|
||||
from lib.filesystem import ensure_parent_dir
|
||||
import csv
|
||||
from lib.rebrickable.stats import read_rows
|
||||
|
||||
|
||||
def load_minifigs_by_set(path: Path) -> List[dict]:
|
||||
@ -15,17 +15,21 @@ def load_minifigs_by_set(path: Path) -> List[dict]:
|
||||
|
||||
|
||||
def aggregate_by_character(rows: Iterable[dict]) -> List[dict]:
|
||||
"""Compte les minifigs distinctes par personnage (fig_num unique)."""
|
||||
"""Compte les minifigs distinctes par personnage (fig_num unique) avec genre."""
|
||||
fig_nums_by_character: Dict[str, set] = defaultdict(set)
|
||||
genders: Dict[str, str] = {}
|
||||
for row in rows:
|
||||
character = row["known_character"].strip()
|
||||
fig_num = row["fig_num"].strip()
|
||||
gender = row.get("gender", "").strip()
|
||||
if character == "" or fig_num == "":
|
||||
continue
|
||||
fig_nums_by_character[character].add(fig_num)
|
||||
if character not in genders:
|
||||
genders[character] = gender
|
||||
aggregates: List[dict] = []
|
||||
for character, fig_nums in fig_nums_by_character.items():
|
||||
aggregates.append({"known_character": character, "minifig_count": len(fig_nums)})
|
||||
aggregates.append({"known_character": character, "gender": genders.get(character, ""), "minifig_count": len(fig_nums)})
|
||||
aggregates.sort(key=lambda r: (-r["minifig_count"], r["known_character"]))
|
||||
return aggregates
|
||||
|
||||
@ -33,7 +37,7 @@ def aggregate_by_character(rows: Iterable[dict]) -> List[dict]:
|
||||
def write_character_counts(path: Path, rows: Sequence[dict]) -> None:
|
||||
"""Écrit le CSV des comptes par personnage."""
|
||||
ensure_parent_dir(path)
|
||||
fieldnames = ["known_character", "minifig_count"]
|
||||
fieldnames = ["known_character", "gender", "minifig_count"]
|
||||
with path.open("w", newline="") as csv_file:
|
||||
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
@ -110,9 +114,11 @@ def aggregate_character_spans(
|
||||
excluded = set(excluded_characters or [])
|
||||
spans: Dict[str, Dict[str, int]] = {}
|
||||
total_counts: Dict[str, int] = defaultdict(int)
|
||||
genders: Dict[str, str] = {}
|
||||
for row in minifigs_rows:
|
||||
character = row["known_character"].strip()
|
||||
fig_num = row["fig_num"].strip()
|
||||
gender = row.get("gender", "").strip()
|
||||
if character == "" or fig_num == "":
|
||||
continue
|
||||
if character in excluded:
|
||||
@ -122,6 +128,8 @@ def aggregate_character_spans(
|
||||
continue
|
||||
year_int = int(year)
|
||||
total_counts[character] += 1
|
||||
if character not in genders:
|
||||
genders[character] = gender
|
||||
current = spans.get(character)
|
||||
if current is None:
|
||||
spans[character] = {"start": year_int, "end": year_int}
|
||||
@ -136,6 +144,7 @@ def aggregate_character_spans(
|
||||
"start_year": str(bounds["start"]),
|
||||
"end_year": str(bounds["end"]),
|
||||
"total_minifigs": str(total_counts[character]),
|
||||
"gender": genders.get(character, ""),
|
||||
}
|
||||
)
|
||||
results.sort(key=lambda r: (int(r["start_year"]), int(r["end_year"]), r["known_character"]))
|
||||
@ -145,7 +154,7 @@ def aggregate_character_spans(
|
||||
def write_character_spans(path: Path, rows: Sequence[dict]) -> None:
|
||||
"""Écrit le CSV des bornes min/max par personnage."""
|
||||
ensure_parent_dir(path)
|
||||
fieldnames = ["known_character", "start_year", "end_year", "total_minifigs"]
|
||||
fieldnames = ["known_character", "start_year", "end_year", "total_minifigs", "gender"]
|
||||
with path.open("w", newline="") as csv_file:
|
||||
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
|
||||
@ -128,6 +128,16 @@ def load_aliases(path: Path) -> Dict[str, str]:
|
||||
return aliases
|
||||
|
||||
|
||||
def load_gender_overrides(path: Path) -> Dict[str, str]:
|
||||
"""Charge les correspondances personnage -> genre."""
|
||||
overrides: Dict[str, str] = {}
|
||||
with path.open() as gender_file:
|
||||
reader = csv.DictReader(gender_file)
|
||||
for row in reader:
|
||||
overrides[row["known_character"].lower()] = row["gender"]
|
||||
return overrides
|
||||
|
||||
|
||||
def normalize_known_character(raw_known: str, extracted_name: str, aliases: Dict[str, str]) -> str:
|
||||
"""Nettoie et mappe un nom vers une version canonique."""
|
||||
base = raw_known or extracted_name
|
||||
@ -201,6 +211,7 @@ def aggregate_heads_by_set(
|
||||
minifig_heads: Dict[str, Set[str]],
|
||||
minifig_catalog: Dict[str, dict],
|
||||
aliases: Dict[str, str],
|
||||
gender_overrides: Dict[str, str],
|
||||
) -> List[dict]:
|
||||
"""Agrège les têtes de minifigs par set en éliminant les rechanges et doublons."""
|
||||
seen: Set[Tuple[str, str]] = set()
|
||||
@ -228,12 +239,14 @@ def aggregate_heads_by_set(
|
||||
normalized = normalize_known_character(known_character, extracted, aliases)
|
||||
if matched_fig == "":
|
||||
continue
|
||||
gender = gender_overrides.get(normalized.lower(), "")
|
||||
heads.append(
|
||||
{
|
||||
"set_num": row["set_num"],
|
||||
"part_num": row["part_num"],
|
||||
"known_character": normalized,
|
||||
"fig_num": matched_fig,
|
||||
"gender": gender,
|
||||
}
|
||||
)
|
||||
seen.add(key)
|
||||
@ -244,7 +257,7 @@ def aggregate_heads_by_set(
|
||||
def write_heads_by_set(destination_path: Path, rows: Sequence[dict]) -> None:
|
||||
"""Écrit le CSV intermédiaire listant les têtes de minifigs par set."""
|
||||
ensure_parent_dir(destination_path)
|
||||
fieldnames = ["set_num", "part_num", "known_character", "fig_num"]
|
||||
fieldnames = ["set_num", "part_num", "known_character", "fig_num", "gender"]
|
||||
with destination_path.open("w", newline="") as csv_file:
|
||||
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
@ -260,6 +273,7 @@ def build_minifigs_by_set(
|
||||
inventory_minifigs_path: Path,
|
||||
minifigs_path: Path,
|
||||
aliases_path: Path,
|
||||
gender_overrides_path: Path,
|
||||
destination_path: Path,
|
||||
) -> None:
|
||||
"""Construit le CSV listant les têtes de minifigs présentes par set."""
|
||||
@ -271,6 +285,7 @@ def build_minifigs_by_set(
|
||||
minifig_heads = build_minifig_heads_lookup(minifig_catalog, latest_inventories, inventory_parts_path, head_parts)
|
||||
set_minifigs = build_set_minifigs_lookup(latest_inventories, inventory_minifigs_path)
|
||||
aliases = load_aliases(aliases_path)
|
||||
gender_overrides = load_gender_overrides(gender_overrides_path)
|
||||
heads = aggregate_heads_by_set(
|
||||
parts_rows,
|
||||
parts_catalog,
|
||||
@ -279,5 +294,6 @@ def build_minifigs_by_set(
|
||||
minifig_heads,
|
||||
minifig_catalog,
|
||||
aliases,
|
||||
gender_overrides,
|
||||
)
|
||||
write_heads_by_set(destination_path, heads)
|
||||
|
||||
@ -12,6 +12,7 @@ INVENTORY_PARTS_PATH = Path("data/raw/inventory_parts.csv")
|
||||
INVENTORY_MINIFIGS_PATH = Path("data/raw/inventory_minifigs.csv")
|
||||
MINIFIGS_PATH = Path("data/raw/minifigs.csv")
|
||||
ALIASES_PATH = Path("config/known_character_aliases.csv")
|
||||
GENDERS_PATH = Path("config/known_character_genders.csv")
|
||||
DESTINATION_PATH = Path("data/intermediate/minifigs_by_set.csv")
|
||||
|
||||
|
||||
@ -25,6 +26,7 @@ def main() -> None:
|
||||
INVENTORY_MINIFIGS_PATH,
|
||||
MINIFIGS_PATH,
|
||||
ALIASES_PATH,
|
||||
GENDERS_PATH,
|
||||
DESTINATION_PATH,
|
||||
)
|
||||
|
||||
|
||||
@ -15,6 +15,7 @@ MINIFIGS_BY_SET_PATH = Path("data/intermediate/minifigs_by_set.csv")
|
||||
SETS_ENRICHED_PATH = Path("data/intermediate/sets_enriched.csv")
|
||||
SPANS_PATH = Path("data/intermediate/minifig_character_spans.csv")
|
||||
DESTINATION_PATH = Path("figures/step24/minifig_character_spans.png")
|
||||
MILESTONES_PATH = Path("config/milestones.csv")
|
||||
EXCLUDED_CHARACTERS = ["Figurant"]
|
||||
|
||||
|
||||
@ -24,7 +25,7 @@ def main() -> None:
|
||||
sets_years = load_sets_enriched(SETS_ENRICHED_PATH)
|
||||
spans = aggregate_character_spans(minifigs, sets_years, excluded_characters=EXCLUDED_CHARACTERS)
|
||||
write_character_spans(SPANS_PATH, spans)
|
||||
plot_character_spans(SPANS_PATH, DESTINATION_PATH)
|
||||
plot_character_spans(SPANS_PATH, DESTINATION_PATH, milestones_path=MILESTONES_PATH)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -12,11 +12,11 @@ matplotlib.use("Agg")
|
||||
def test_plot_character_spans(tmp_path: Path) -> None:
|
||||
"""Génère le graphique de span des personnages."""
|
||||
spans_path = tmp_path / "minifig_character_spans.csv"
|
||||
destination = tmp_path / "figures" / "step23" / "minifig_character_spans.png"
|
||||
destination = tmp_path / "figures" / "step24" / "minifig_character_spans.png"
|
||||
spans_path.write_text(
|
||||
"known_character,start_year,end_year,total_minifigs\n"
|
||||
"Owen Grady,2020,2022,3\n"
|
||||
"Figurant,2019,2020,2\n"
|
||||
"known_character,start_year,end_year,total_minifigs,gender\n"
|
||||
"Owen Grady,2020,2022,3,male\n"
|
||||
"Figurant,2019,2020,2,unknown\n"
|
||||
)
|
||||
|
||||
plot_character_spans(spans_path, destination)
|
||||
|
||||
@ -15,18 +15,54 @@ def test_aggregate_by_character_counts_unique_figs() -> None:
|
||||
"""Compter les minifigs distinctes par personnage en excluant les noms vides."""
|
||||
aggregates = aggregate_by_character(
|
||||
[
|
||||
{"set_num": "123-1", "part_num": "head-a", "known_character": "Owen Grady", "fig_num": "fig-owen-1"},
|
||||
{"set_num": "124-1", "part_num": "head-b", "known_character": "Owen Grady", "fig_num": "fig-owen-1"},
|
||||
{"set_num": "125-1", "part_num": "head-c", "known_character": "Owen Grady", "fig_num": "fig-owen-2"},
|
||||
{"set_num": "126-1", "part_num": "head-d", "known_character": "Figurant", "fig_num": "fig-guard-1"},
|
||||
{"set_num": "128-1", "part_num": "head-f", "known_character": "Figurant", "fig_num": "fig-guard-1"},
|
||||
{"set_num": "129-1", "part_num": "head-g", "known_character": "", "fig_num": "fig-guard-2"},
|
||||
{
|
||||
"set_num": "123-1",
|
||||
"part_num": "head-a",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen-1",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "124-1",
|
||||
"part_num": "head-b",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen-1",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "125-1",
|
||||
"part_num": "head-c",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen-2",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "126-1",
|
||||
"part_num": "head-d",
|
||||
"known_character": "Figurant",
|
||||
"fig_num": "fig-guard-1",
|
||||
"gender": "unknown",
|
||||
},
|
||||
{
|
||||
"set_num": "128-1",
|
||||
"part_num": "head-f",
|
||||
"known_character": "Figurant",
|
||||
"fig_num": "fig-guard-1",
|
||||
"gender": "unknown",
|
||||
},
|
||||
{
|
||||
"set_num": "129-1",
|
||||
"part_num": "head-g",
|
||||
"known_character": "",
|
||||
"fig_num": "fig-guard-2",
|
||||
"gender": "unknown",
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
assert aggregates == [
|
||||
{"known_character": "Owen Grady", "minifig_count": 2},
|
||||
{"known_character": "Figurant", "minifig_count": 1},
|
||||
{"known_character": "Owen Grady", "gender": "male", "minifig_count": 2},
|
||||
{"known_character": "Figurant", "gender": "unknown", "minifig_count": 1},
|
||||
]
|
||||
|
||||
|
||||
@ -34,13 +70,13 @@ def test_write_character_counts_outputs_csv(tmp_path: Path) -> None:
|
||||
"""Écrit le CSV des comptes par personnage."""
|
||||
destination = tmp_path / "counts.csv"
|
||||
rows = [
|
||||
{"known_character": "A", "minifig_count": 2},
|
||||
{"known_character": "B", "minifig_count": 1},
|
||||
{"known_character": "A", "gender": "male", "minifig_count": 2},
|
||||
{"known_character": "B", "gender": "female", "minifig_count": 1},
|
||||
]
|
||||
|
||||
write_character_counts(destination, rows)
|
||||
|
||||
assert destination.read_text() == "known_character,minifig_count\nA,2\nB,1\n"
|
||||
assert destination.read_text() == "known_character,gender,minifig_count\nA,male,2\nB,female,1\n"
|
||||
|
||||
|
||||
def test_aggregate_presence_by_year_excludes_figurants(tmp_path: Path) -> None:
|
||||
@ -52,8 +88,20 @@ def test_aggregate_presence_by_year_excludes_figurants(tmp_path: Path) -> None:
|
||||
"124-1,2021\n"
|
||||
)
|
||||
minifigs_rows = [
|
||||
{"set_num": "123-1", "known_character": "Owen Grady", "fig_num": "fig-owen", "part_num": "head-a"},
|
||||
{"set_num": "124-1", "known_character": "Figurant", "fig_num": "fig-guard", "part_num": "head-b"},
|
||||
{
|
||||
"set_num": "123-1",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen",
|
||||
"part_num": "head-a",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "124-1",
|
||||
"known_character": "Figurant",
|
||||
"fig_num": "fig-guard",
|
||||
"part_num": "head-b",
|
||||
"gender": "unknown",
|
||||
},
|
||||
]
|
||||
sets_years = load_sets_enriched(sets_path)
|
||||
|
||||
@ -76,13 +124,31 @@ def test_aggregate_character_spans_excludes_figurants(tmp_path: Path) -> None:
|
||||
)
|
||||
sets_years = load_sets_enriched(sets_path)
|
||||
minifigs_rows = [
|
||||
{"set_num": "123-1", "known_character": "Owen Grady", "fig_num": "fig-owen", "part_num": "head-a"},
|
||||
{"set_num": "124-1", "known_character": "Owen Grady", "fig_num": "fig-owen", "part_num": "head-a"},
|
||||
{"set_num": "125-1", "known_character": "Figurant", "fig_num": "fig-guard", "part_num": "head-b"},
|
||||
{
|
||||
"set_num": "123-1",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen",
|
||||
"part_num": "head-a",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "124-1",
|
||||
"known_character": "Owen Grady",
|
||||
"fig_num": "fig-owen",
|
||||
"part_num": "head-a",
|
||||
"gender": "male",
|
||||
},
|
||||
{
|
||||
"set_num": "125-1",
|
||||
"known_character": "Figurant",
|
||||
"fig_num": "fig-guard",
|
||||
"part_num": "head-b",
|
||||
"gender": "unknown",
|
||||
},
|
||||
]
|
||||
|
||||
spans = aggregate_character_spans(minifigs_rows, sets_years, excluded_characters=["Figurant"])
|
||||
|
||||
assert spans == [
|
||||
{"known_character": "Owen Grady", "start_year": "2020", "end_year": "2021", "total_minifigs": "2"},
|
||||
{"known_character": "Owen Grady", "start_year": "2020", "end_year": "2021", "total_minifigs": "2", "gender": "male"},
|
||||
]
|
||||
|
||||
@ -14,9 +14,9 @@ def test_plot_minifigs_per_character(tmp_path: Path) -> None:
|
||||
counts_path = tmp_path / "counts.csv"
|
||||
destination = tmp_path / "figures" / "step22" / "minifig_characters.png"
|
||||
counts_path.write_text(
|
||||
"known_character,minifig_count\n"
|
||||
"Owen Grady,2\n"
|
||||
"Figurant,1\n"
|
||||
"known_character,gender,minifig_count\n"
|
||||
"Owen Grady,male,2\n"
|
||||
"Figurant,unknown,1\n"
|
||||
)
|
||||
|
||||
plot_minifigs_per_character(counts_path, destination)
|
||||
|
||||
@ -71,6 +71,13 @@ def test_build_minifigs_by_set_filters_spares_and_deduplicates(tmp_path) -> None
|
||||
"alias,canonical\n"
|
||||
"Guard in Helmet with Trans-Brown Visor,Figurant\n",
|
||||
)
|
||||
genders_path = tmp_path / "known_character_genders.csv"
|
||||
write_csv(
|
||||
genders_path,
|
||||
"known_character,gender\n"
|
||||
"Owen Grady,male\n"
|
||||
"Figurant,unknown\n",
|
||||
)
|
||||
destination_path = tmp_path / "minifigs_by_set.csv"
|
||||
|
||||
build_minifigs_by_set(
|
||||
@ -81,12 +88,13 @@ def test_build_minifigs_by_set_filters_spares_and_deduplicates(tmp_path) -> None
|
||||
inventory_minifigs_path,
|
||||
minifigs_path,
|
||||
aliases_path,
|
||||
genders_path,
|
||||
destination_path,
|
||||
)
|
||||
|
||||
assert destination_path.read_text() == (
|
||||
"set_num,part_num,known_character,fig_num\n"
|
||||
"123-1,head-a,Owen Grady,fig-owen\n"
|
||||
"123-1,head-b,Figurant,fig-guard\n"
|
||||
"124-1,head-b,Figurant,fig-guard\n"
|
||||
"set_num,part_num,known_character,fig_num,gender\n"
|
||||
"123-1,head-a,Owen Grady,fig-owen,male\n"
|
||||
"123-1,head-b,Figurant,fig-guard,unknown\n"
|
||||
"124-1,head-b,Figurant,fig-guard,unknown\n"
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user